


matplotlib Plotting 
Cookbook

Learn how to create professional scientific plots  
using matplotlib, with more than 60 recipes that  
cover common use cases

Alexandre Devert

   BIRMINGHAM - MUMBAI



matplotlib Plotting Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,  
or transmitted in any form or by any means, without the prior written permission of the 
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the 
information presented. However, the information contained in this book is sold without 
warranty, either express or implied. Neither the author, nor Packt Publishing, and its  
dealers and distributors will be held liable for any damages caused or alleged to be  
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the  
companies and products mentioned in this book by the appropriate use of capitals.  
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2014

Production Reference: 1200314

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-326-5

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)



Credits

Author
Alexandre Devert

Reviewers
Francesco Benincasa

Valerio Maggio

Jonathan Street

Dr. Allen Chi-Shing Yu

Acquisition Editor
Rebecca Youe

Commissioning Editor
Usha Iyer

Content Development Editor
Ankita Shashi

Technical Editors
Shubhangi Dhamgaye

Pratik More

Humera Shaikh

Copy Editors
Dipti Kapadia

Aditya Nair

Kirti Pai

Project Coordinator
Sanchita Mandal

Proofreaders
Ameesha Green

Paul Hindle

Indexer
Tejal Soni

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph



About the Author

Alexandre Devert is a scientist, currently busy solving problems and making tools for 
molecular biologists. Before this, he used to teach data mining, software engineering, and 
research in numerical optimization. He is an enthusiastic Python coder as well and never  
gets enough of it!

I would like to thank Xiang, my amazing, wonderful wife, for her patience, 
support, and encouragement, as well as my parents for their support  
and encouragement.



About the Reviewers

Francesco Benincasa, Master of Science in Software Engineering, is a designer and 
developer. He is a GNU/Linux and Python expert and has vast experience in many languages 
and applications. He has been using Python as the primary language for more than 10 years, 
together with JavaScript and framewoks such as Plone or Django.

He is interested in advanced web and network developing as well as scientific data 
manipulation and visualization. Over the last few years, he has been using graphical Python 
libraries such as Matplotlib/Basemap and scientific libraries such as NumPy/SciPy, as well  
as scientific applications such as GrADS, NCO, and CDO.

Currently, he is working at the Earth Science Department of the Barcelona Supercomputing 
Center (www.bsc.es) as a Research Support Engineer for the World Meteorological 
Organization Sand and Dust Storms Warning Advisory and Assessment System  
(sds-was.aemet.es).



Valerio Maggio has a PhD in Computational Science from the University of Naples 
"Federico II" and is currently a Postdoc researcher at the University of Salerno.

His research interests are mainly focused on unsupervised machine learning and software 
engineering, recently combined with semantic web technologies for linked data and Big  
Data analysis.

Valerio started developing open source software in 2004, when he was studying for his 
Bachelor's degree. In 2006, he started working on Python, and has since contributed to several 
open source projects in this language. Currently, he applies Python as the mainstream language 
for his machine learning code, making intensive use of matplotlib to analyze experimental data.

Valerio is also a member of the Italian Python community and enjoys playing chess and 
drinking tea.

I wish to sincerely thank Valeria for her true love and constant support and 
for being the sweetest girl I've ever met.

Jonathan Street is a well-known researcher in the fields of physiology and biomarker 
discovery. He began using Python in 2006 and extensively used matplotlib for many  
figures in his PhD thesis. He shares his interest in Python data tools by giving lectures  
and guiding educational sessions for regional groups, as well as writing on his blog at 
http://jonathanstreet.com.



Dr. Allen Chi-Shing Yu is a postdoctoral researcher working in the field of cancer genetics. 
He obtained his BSc degree in Molecular Biotechnology from the Chinese University of Hong 
Kong in 2009, and obtained a PhD in Biochemistry from the same university in 2013. Allen's 
PhD research primarily involved genomic and transcriptomic characterization of novel bacterial 
strains that can use toxic fluoro-tryptophans but not canonical tryptophan for propagation, 
under the supervision of Prof. Jeffrey Tze-Fei Wong and Prof. Ting-fung Chan. The findings 
demonstrated that the genetic code is not an immutable construct, and a small number of 
analogue-sensitive proteins are stabilizing the assignment of canonical amino acids to the 
genetic code.

Soon after his microbial studies, Allen was involved in the identification and characterization 
of a novel mutation marker causing Spinocerebellar Ataxia—a group of genetically diverse 
neurodegenerative disorders. Through the development of a tool for detecting viral integration 
events in human cancer samples (ViralFusionSeq), he has entered the field of cancer 
genetics. As the postdoctoral researcher in Prof. Nathalie Wong's lab, he is now responsible 
for the high-throughput sequencing analysis of hepatocellular carcinoma, as well as the 
maintenance of several Linux-based computing clusters.

Allen is proficient in both wet-lab techniques and computer programming. He is also 
committed to developing and promoting open source technologies, through a collection  
of tutorials and documentations on his blog at http://www.allenyu.info. Readers 
wishing to contact Dr. Yu can do so via the contact details on his website.



www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to  
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub 
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print 
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up  
for a range of free newsletters and receive exclusive discounts and offers on Packt books  
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book 
library. Here, you can access, read and search across Packt's entire library of books. 

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view nine entirely free books. Simply use your login credentials for 
immediate access.



Table of Contents
Preface	 1
Chapter 1: First Steps	 5

Introduction	 5
Installing matplotlib	 6
Plotting one curve	 7
Using NumPy	 10
Plotting multiple curves	 13
Plotting curves from file data	 16
Plotting points	 20
Plotting bar charts	 22
Plotting multiple bar charts	 25
Plotting stacked bar charts	 27
Plotting back-to-back bar charts	 29
Plotting pie charts	 31
Plotting histograms	 32
Plotting boxplots	 33
Plotting triangulations	 36

Chapter 2: Customizing the Color and Styles	 39
Introduction	 40
Defining your own colors	 40
Using custom colors for scatter plots	 42
Using custom colors for bar charts	 46
Using custom colors for pie charts	 49
Using custom colors for boxplots	 50
Using colormaps for scatter plots	 52
Using colormaps for bar charts	 54
Controlling a line pattern and thickness	 56
Controlling a fill pattern	 60



ii

Table of Contents

Controlling a marker's style	 62
Controlling a marker's size	 66
Creating your own markers	 69
Getting more control over markers	 71
Creating your own color scheme	 72

Chapter 3: Working with Annotations	 77
Introduction	 77
Adding a title	 78
Using LaTeX-style notations	 79
Adding a label to each axis	 81
Adding text	 82
Adding arrows	 86
Adding a legend	 88
Adding a grid	 90
Adding lines	 91
Adding shapes	 93
Controlling tick spacing	 97
Controlling tick labeling	 99

Chapter 4: Working with Figures	 107
Introduction	 107
Compositing multiple figures	 108
Scaling both the axes equally	 112
Setting an axis range	 114
Setting the aspect ratio	 116
Inserting subfigures	 117
Using a logarithmic scale	 118
Using polar coordinates	 121

Chapter 5: Working with a File Output	 125
Introduction	 125
Generating a PNG picture file	 126
Handling transparency	 127
Controlling the output resolution	 131
Generating PDF or SVG documents	 133
Handling multiple-page PDF documents	 134

Chapter 6: Working with Maps	 139
Introduction	 139
Visualizing the content of a 2D array	 140
Adding a colormap legend to a figure	 145
Visualizing nonuniform 2D data	 147



iii

Table of Contents

Visualizing a 2D scalar field	 149
Visualizing contour lines	 151
Visualizing a 2D vector field	 154
Visualizing the streamlines of a 2D vector field	 157

Chapter 7: Working with 3D Figures	 161
Introduction	 161
Creating 3D scatter plots	 161
Creating 3D curve plots	 165
Plotting a scalar field in 3D	 167
Plotting a parametric 3D surface	 170
Embedding 2D figures in a 3D figure	 173
Creating a 3D bar plot	 176

Chapter 8: User Interface	 179
Introduction	 179
Making a user-controllable plot	 179
Integrating a plot to a Tkinter user interface	 183
Integrating a plot to a wxWidgets user interface	 188
Integrating a plot to a GTK user interface	 194
Integrating a plot in a Pyglet application	 198

Index	 201





Preface
matplotlib is a Python module for plotting, and it is a component of the ScientificPython modules 
suite. matplotlib allows you to easily prepare professional-grade figures with a comprehensive 
API to customize every aspect of the figures. In this book, we will cover the different types of 
figures and how to adjust a figure to suit your needs. The recipes are orthogonal and you will  
be able to compose your own solutions very quickly.

What this book covers
Chapter 1, First Steps, introduces the basics of working with matplotlib. The basic figure  
types are introduced with minimal examples.

Chapter 2, Customizing the Color and Styles, covers how to control the color and style  
of a figure—this includes markers, line thickness, line patterns, and using color maps  
to color a figure several items.

Chapter 3, Working with Annotations, covers how to annotate a figure—this includes  
adding an axis legend, arrows, text boxes, and shapes.

Chapter 4, Working with Figures, covers how to prepare a complex figure—this includes 
compositing several figures, controlling the aspect ratio, axis range, and the coordinate 
system.

Chapter 5, Working with a File Output, covers output to files, either in bitmap or vector 
formats. Issues like transparency, resolution, and multiple pages are studied in detail.

Chapter 6, Working with Maps, covers plotting matrix-like data—this includes maps,  
quiver plots, and stream plots.

Chapter 7, Working with 3D Figures, covers 3D plots—this includes scatter plots, line plots, 
surface plots, and bar charts.

Chapter 8, User Interface, covers a set of user interface integration solutions, ranging  
from simple and minimalist to sophisticated.



Preface

2

What you need for this book
The examples in this book are written for Matplotlib 1.2 and Python 2.7 or 3.

Most examples rely on NumPy and SciPy. Some examples require SymPy, while some other 
examples require LaTeX.

Who this book is for
The book is intended for readers who have some notions of Python and a science background.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of 
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, 
dummy URLs, user input, and Twitter handles are shown as follows: "We can include other 
contexts through the use of the include directive."

A block of code is set as follows:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

When we wish to draw your attention to a particular part of a code block, the relevant lines or 
items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

# cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

  /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the screen,  
in menus or dialog boxes for example, appear in the text like this: "Clicking on the Next  
button moves you to the next screen".



Preface

3

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to develop 
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,  
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to 
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your 
account at http://www.packtpub.com. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams used  
in Chapter 1, First Steps, of this book. The color images will help you better understand the 
changes in the output. You can download this file from https://www.packtpub.com/
sites/default/files/downloads/3265OS_Graphics.pdf.

http://www.packtpub.com/
http://www.packtpub.com/support


Preface

4

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be 
grateful if you would report this to us. By doing so, you can save other readers from frustration 
and help us improve subsequent versions of this book. If you find any errata, please report them 
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on 
the errata submission form link, and entering the details of your errata. Once your errata are 
verified, your submission will be accepted and the errata will be uploaded on our website, or 
added to any list of existing errata, under the Errata section of that title. Any existing errata can 
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, 
we take the protection of our copyright and licenses very seriously. If you come across any 
illegal copies of our works, in any form, on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any aspect 
of the book, and we will do our best to address it.

mailto:copyright@packtpub.com


1
First Steps

In this chapter, we will cover:

ff Installing matplotlib

ff Plotting one curve

ff Using NumPy

ff Plotting multiple curves

ff Plotting curves from file data

ff Plotting points

ff Plotting bar charts

ff Plotting multiple bar charts

ff Plotting stacked bar charts

ff Plotting back-to-back bar charts

ff Plotting pie charts

ff Plotting histograms

ff Plotting boxplots

ff Plotting triangulations

Introduction
matplotlib makes scientific plotting very straightforward. matplotlib is not the first attempt 
at making the plotting of graphs easy. What matplotlib brings is a modern solution to the 
balance between ease of use and power. matplotlib is a module for Python, a programming 
language. In this chapter, we will provide a quick overview of what using matplotlib feels like. 
Minimalistic recipes are used to introduce the principles matplotlib is built upon.



First Steps

6

Installing matplotlib
Before experimenting with matplotlib, you need to install it. Here we introduce some tips to get 
matplotlib up and running without too much trouble.

How to do it...
We have three likely scenarios: you might be using Linux, OS X, or Windows.

Linux

Most Linux distributions have Python installed by default, and provide matplotlib in their 
standard package list. So all you have to do is use the package manager of your distribution to 
install matplotlib automatically. In addition to matplotlib, we highly recommend that you install 
NumPy, SciPy, and SymPy, as they are supposed to work together. The following list consists of 
commands to enable the default packages available in different versions of Linux:

ff Ubuntu: The default Python packages are compiled for Python 2.7. In a command 
terminal, enter the following command:
sudo apt-get install python-matplotlib python-numpy python-scipy 
python-sympy

ff ArchLinux: The default Python packages are compiled for Python 3. In a command 
terminal, enter the following command:
sudo pacman -S python-matplotlib python-numpy python-scipy python-
sympy

If you prefer using Python 2.7, replace python by python2 in the package names

ff Fedora: The default Python packages are compiled for Python 2.7. In a command 
terminal, enter the following command:
sudo yum install python-matplotlib numpy scipy sympy

There are other ways to install these packages; in this chapter, 
we propose the most simple and seamless ways to do it.

Windows and OS X

Windows and OS X do not have a standard package system for software installation. We have 
two options—using a ready-made self-installing package or compiling matplotlib from the code 
source. The second option involves much more work; it is worth the effort to have the latest, 
bleeding edge version of matplotlib installed. Therefore, in most cases, using a ready-made 
package is a more pragmatic choice.



Chapter 1

7

You have several choices for ready-made packages: Anaconda, Enthought Canopy, Algorete 
Loopy, and more! All these packages provide Python, SciPy, NumPy, matplotlib, and more (a 
text editor and fancy interactive shells) in one go. Indeed, all these systems install their own 
package manager and from there you install/uninstall additional packages as you would do 
on a typical Linux distribution. For the sake of brevity, we will provide instructions only for 
Enthought Canopy. All the other systems have extensive documentation online, so installing 
them should not be too much of a problem.

So, let's install Enthought Canopy by performing the following steps:

1.	 Download the Enthought Canopy installer from https://www.enthought.com/
products/canopy. You can choose the free Express edition. The website can  
guess your operating system and propose the right installer for you.

2.	 Run the Enthought Canopy installer. You do not need to be an administrator to install 
the package if you do not want to share the installed software with other users.

3.	 When installing, just click on Next to keep the defaults. You can find additional 
information about the installation process at http://docs.enthought.com/
canopy/quick-start.html.

That's it! You will have Python 2.7, NumPy, SciPy, and matplotlib installed and ready to run.

Plotting one curve
The initial example of Hello World! for a plotting software is often about showing a simple curve. 
We will keep up with that tradition. It will also give you a rough idea about how matplotlib works.

Getting ready
You need to have Python (either v2.7 or v3) and matplotlib installed. You also need to have a 
text editor (any text editor will do) and a command terminal to type and run commands.

How to do it...
Let's get started with one of the most common and basic graph that any plotting software 
offers—curves. In a text file saved as plot.py, we have the following code:

import matplotlib.pyplot as plt

X = range(100)
Y = [value ** 2 for value in X]

plt.plot(X, Y)
plt.show()



First Steps

8

Downloading the example code
You can download the sample code files for all Packt books that you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Assuming that you installed Python and matplotlib, you can now use Python to interpret 
this script. If you are not familiar with Python, this is indeed a Python script we have there! 
In a command terminal, run the script in the directory where you saved plot.py with the 
following command:

python plot.py

Doing so will open a window as shown in the following screenshot:

The window shows the curve Y = X ** 2 with X in the [0, 99] range. As you might have noticed, 
the window has several icons, some of which are as follows:

ff : This icon opens a dialog, allowing you to save the graph as a picture file. You can 
save it as a bitmap picture or a vector picture.



Chapter 1

9

ff : This icon allows you to translate and scale the graphics. Click on it and then move 
the mouse over the graph. Clicking on the left button of the mouse will translate the 
graph according to the mouse movements. Clicking on the right button of the mouse 
will modify the scale of the graphics.

ff : This icon will restore the graph to its initial state, canceling any translation or 
scaling you might have applied before.

How it works...
Assuming that you are not very familiar with Python yet, let's analyze the script demonstrated 
in the previous section.

The first line tells Python that we are using the matplotlib.pyplot module. To save on 
a bit of typing, we make the name plt equivalent to matplotlib.pyplot. This is a very 
common practice that you will see in matplotlib code.

The second line creates a list named X, with all the integer values from 0 to 99. The range 
function is used to generate consecutive numbers. You can run the interactive Python 
interpreter and type the command range(100) if you use Python 2, or the command 
list(range(100)) if you use Python 3. This will display the list of all the integer values 
from 0 to 99. In both versions, sum(range(100)) will compute the sum of the integers  
from 0 to 99.

The third line creates a list named Y, with all the values from the list X squared. Building a 
new list by applying a function to each member of another list is a Python idiom, named list 
comprehension. The list Y will contain the squared values of the list X in the same order.  
So Y will contain 0, 1, 4, 9, 16, 25, and so on.

The fourth line plots a curve, where the x coordinates of the curve's points are given in the  
list X, and the y coordinates of the curve's points are given in the list Y. Note that the names 
of the lists can be anything you like.

The last line shows a result, which you will see on the window while running the script.

There's more...
So what we have learned so far? Unlike plotting packages like gnuplot, matplotlib is not  
a command interpreter specialized for the purpose of plotting. Unlike Matlab, matplotlib is 
not an integrated environment for plotting either. matplotlib is a Python module for plotting. 
Figures are described with Python scripts, relying on a (fairly large) set of functions provided 
by matplotlib.



First Steps

10

Thus, the philosophy behind matplotlib is to take advantage of an existing language, Python. 
The rationale is that Python is a complete, well-designed, general purpose programming 
language. Combining matplotlib with other packages does not involve tricks and hacks, just 
Python code. This is because there are numerous packages for Python for pretty much any 
task. For instance, to plot data stored in a database, you would use a database package to 
read the data and feed it to matplotlib. To generate a large batch of statistical graphics, you 
would use a scientific computing package such as SciPy and Python's I/O modules.

Thus, unlike many plotting packages, matplotlib is very orthogonal—it does plotting and only 
plotting. If you want to read inputs from a file or do some simple intermediary calculations,  
you will have to use Python modules and some glue code to make it happen. Fortunately, 
Python is a very popular language, easy to master and with a large user base. Little by little, 
we will demonstrate the power of this approach.

Using NumPy
NumPy is not required to use matplotlib. However, many matplotlib tricks, code samples,  
and examples use NumPy. A short introduction to NumPy usage will show you the reason.

Getting ready
Along with having Python and matplotlib installed, you also have NumPy installed. You have  
a text editor and a command terminal.

How to do it...
Let's plot another curve, sin(x), with x in the [0, 2 * pi] interval. The only difference with 
the preceding script is the part where we generate the point coordinates. Type and save the 
following script as sin-1.py:

import math
import matplotlib.pyplot as plt

T = range(100)
X = [(2 * math.pi * t) / len(T) for t in T]
Y = [math.sin(value) for value in X]

plt.plot(X, Y)
plt.show()

Then, type and save the following script as sin-2.py:

import numpy as np
import matplotlib.pyplot as plt



Chapter 1

11

X = np.linspace(0, 2 * np.pi, 100)
Y = np.sin(X)

plt.plot(X, Y)
plt.show()

Running either sin-1.py or sin-2.py will show the following graph exactly:

How it works...
The first script, sin-1.py, generates the coordinates for a sinusoid using only Python's 
standard library. The following points describe the steps we performed in the script in the 
previous section:

1.	 We created a list T with numbers from 0 to 99—our curve will be drawn with  
100 points.

2.	 We computed the x coordinates by simply rescaling the values stored in T so  
that x goes from 0 to 2 pi (the range() built-in function can only generate  
integer values).

3.	 As in the first example, we generated the y coordinates.



First Steps

12

The second script sin-2.py, does exactly the same job as sin-1.py—the results are 
identical. However, sin-2.py is slightly shorter and easier to read since it uses the  
NumPy package.

NumPy is a Python package for scientific computing. matplotlib can 
work without NumPy, but using NumPy will save you lots of time and 
effort. The NumPy package provides a powerful multidimensional 
array object and a host of functions to manipulate it.

The NumPy package

In sin-2.py, the X list is now a one-dimensional NumPy array with 100 evenly spaced values 
between 0 and 2 pi. This is the purpose of the function numpy.linspace. This is arguably 
more convenient than computing as we did in sin-1.py. The Y list is also a one-dimensional 
NumPy array whose values are computed from the coordinates of X. NumPy functions work on 
whole arrays as they would work on a single value. Again, there is no need to compute those 
values explicitly one-by-one, as we did in sin-1.py. We have a shorter yet readable code 
compared to the pure Python version.

There's more...
NumPy can perform operations on whole arrays at once, saving us much work when 
generating curve coordinates. Moreover, using NumPy will most likely lead to much faster 
code than the pure Python equivalent. Easier to read and faster code, what's not to like?  
The following is an example where we plot the binomial x^2 -2x +1 in the [-3,2] interval  
using 200 points:

import numpy as np
import matplotlib.pyplot as plt

X = np.linspace(-3, 2, 200)
Y = X ** 2 - 2 * X + 1.

plt.plot(X, Y)
plt.show()



Chapter 1

13

Running the preceding script will give us the result shown in the following graph:

Again, we could have done the plotting in pure Python, but it would arguably not be as easy to 
read. Although matplotlib can be used without NumPy, the two make for a powerful combination.

Plotting multiple curves
One of the reasons we plot curves is to compare those curves. Are they matching? Where do 
they match? Where do they not match? Are they correlated? A graph can help to form a quick 
judgment for more thorough investigations.

How to do it...
Let's show both sin(x) and cos(x) in the [0, 2pi] interval as follows:

import numpy as np
import matplotlib.pyplot as plt

X = np.linspace(0, 2 * np.pi, 100)



First Steps

14

Ya = np.sin(X)
Yb = np.cos(X)

plt.plot(X, Ya)
plt.plot(X, Yb)
plt.show()

The preceding script will give us the result shown in the following graph:

How it works...
The two curves show up with a different color automatically picked up by matplotlib.  
We use one function call plt.plot() for one curve; thus, we have to call plt.plot() 
here twice. However, we still have to call plt.show() only once. The functions calls plt.
plot(X, Ya) and plt.plot(X, Yb) can be seen as declarations of intentions. We want 
to link those two sets of points with a distinct curve for each.

matplotlib will simply keep note of this intention but will not plot anything yet. The plt.show() 
curve, however, will signal that we want to plot what we have described so far.



Chapter 1

15

There's more...
This deferred rendering mechanism is central to matplotlib. You can declare what you  
render as and when it suits you. The graph will be rendered only when you call plt.show(). 
To illustrate this, let's look at the following script, which renders a bell-shaped curve, and the 
slope of that curve for each of its points:

import numpy as np
import matplotlib.pyplot as plt

def plot_slope(X, Y):
  Xs = X[1:] - X[:-1]
  Ys = Y[1:] - Y[:-1]
  plt.plot(X[1:], Ys / Xs)

X = np.linspace(-3, 3, 100)
Y = np.exp(-X ** 2)

plt.plot(X, Y)
plot_slope(X, Y)

plt.show()

The preceding script will produce the following graph:



First Steps

16

One of the function call, plt.plot(), is done inside the plot_slope function, which does 
not have any influence on the rendering of the graph as plt.plot() simply declares what 
we want to render, but does not execute the rendering yet. This is very useful when writing 
scripts for complex graphics with a lot of curves. You can use all the features of a proper 
programming language—loop, function calls, and so on— to compose a graph.

Plotting curves from file data
As explained earlier, matplotlib only handles plotting. If you want to plot data stored in a file, 
you will have to use Python code to read the file and extract the data you need.

How to do it...
Let's assume that we have time series stored in a plain text file named my_data.txt  
as follows:

0  0
1  1
2  4
4 16
5 25
6 36

A minimalistic pure Python approach to read and plot that data would go as follows:

import matplotlib.pyplot as plt

X, Y = [], []
for line in open('my_data.txt', 'r'):
  values = [float(s) for s in line.split()]
  X.append(values[0])
  Y.append(values[1])

plt.plot(X, Y)
plt.show()



Chapter 1

17

This script, together with the data stored in my_data.txt, will produce the following graph:

How it works...
The following are some explanations on how the preceding script works:

ff The line X, Y = [], [] initializes the list of coordinates X and Y as empty lists.

ff The line for line in open('my_data.txt', 'r') defines a loop that will 
iterate each line of the text file my_data.txt. On each iteration, the current line 
extracted from the text file is stored as a string in the variable line.

ff The line values = [float(s) for s in line.split()] splits the current 
line around empty characters to form a string of tokens. Those tokens are then 
interpreted as floating point values. Those values are stored in the list values.

ff Then, in the two next lines, X.append(values[0]) and Y.append(values[1]), 
the values stored in values are appended to the lists X and Y.



First Steps

18

The following equivalent one-liner to read a text file may bring a smile to those more familiar 
with Python:

import matplotlib.pyplot as plt

with open('my_data.txt', 'r') as f:
  X, Y = zip(*[[float(s) for s in line.split()] for line in f])

plt.plot(X, Y)
plt.show()

There's more...
In our data loading code, note that there is no serious checking or error handling going on.  
In any case, one might remember that a good programmer is a lazy programmer. Indeed, 
since NumPy is so often used with matplotlib, why not use it here? Run the following script  
to enable NumPy:

import numpy as np
import matplotlib.pyplot as plt

data = np.loadtxt('my_data.txt')

plt.plot(data[:,0], data[:,1])
plt.show()

This is as short as the one-liner shown in the preceding section, yet easier to read, and  
it will handle many error cases that our pure Python code does not handle. The following  
point describes the preceding script:

ff The numpy.loadtxt() function reads a text file and returns a 2D array. With NumPy, 
2D arrays are not a list of lists, they are true, full-blown matrices.

ff The variable data is a NumPy 2D array, which give us the benefit of being able  
to manipulate rows and columns of a matrix as a 1D array. Indeed, in the line plt.
plot(data[:,0], data[:,1]), we give the first column of data as x coordinates 
and the second column of data as y coordinates. This notation is specific to NumPy.

Along with making the code shorter and simpler, using NumPy brings additional advantages. 
For large files, using NumPy will be noticeably faster (the NumPy module is mostly written in 
C), and storing the whole dataset as a NumPy array can save memory as well. Finally, using 
NumPy allows you to support other common file formats (CVS and Matlab) for numerical data 
without much effort.



Chapter 1

19

As a way to demonstrate all that we have seen so far, let's consider the following task.  
A file contains N columns of values, describing N–1 curves. The first column contains the  
x coordinates, the second column contains the y coordinates of the first curve, the third 
column contains the y coordinates of the second curve, and so on. We want to display  
those N–1 curves. We will do so by using the following code:

import numpy as np
import matplotlib.pyplot as plt

data = np.loadtxt('my_data.txt')
for column in data.T:
  plt.plot(data[:,0], column)

plt.show()

The file my_data.txt should contain the following content:

0 0 6
1 1 5
2 4 4
4 16 3
5 25 2
6 36 1

Then we get the following graph:



First Steps

20

We did the job with little effort by exploiting two tricks. In NumPy notation, data.T is a 
transposed view of the 2D array data—rows are seen as columns and columns are seen  
as rows. Also, we can iterate over the rows of a multidimensional array by doing for row  
in data. Thus, doing for column in data.T will iterate over the columns of an array. 
With a few lines of code, we have a fairly general plotting generic script.

Plotting points
When displaying a curve, we implicitly assume that one point follows another—our data is the 
time series. Of course, this does not always have to be the case. One point of the data can be 
independent from the other. A simple way to represent such kind of data is to simply show the 
points without linking them.

How to do it...
The following script displays 1024 points whose coordinates are drawn randomly from the 
[0,1] interval:

import numpy as np
import matplotlib.pyplot as plt

data = np.random.rand(1024, 2)

plt.scatter(data[:,0], data[:,1])
plt.show()

The preceding script will produce the following graph:



Chapter 1

21

How it works...
The function plt.scatter() works exactly like plt.plot(), taking the x and y coordinates 
of points as input parameters. However, each point is simply shown with one marker. Don't be 
fooled by this simplicity—plt.scatter() is a rich command. By playing with its many optional 
parameters, we can achieve many different effects. We will cover this in Chapter 2, Customizing 
the Color and Styles, and Chapter 3, Working with Annotations.



First Steps

22

Plotting bar charts
Bar charts are a common staple of plotting package, and even matplotlib has them.

How to do it...
The dedicated function for bar charts is pyplot.bar(). We will enable this function by 
executing the following script:

import matplotlib.pyplot as plt

data = [5., 25., 50., 20.]

plt.bar(range(len(data)), data)
plt.show()

The preceding script will produce the following graph:

How it works...
For each value in the list data, one vertical bar is shown. The pyplot.bar() function receives 
two arguments—the x coordinate for each bar and the height of each bar. Here, we use the 
coordinates 0, 1, 2, and so on, for each bar, which is the purpose of range(len(data)).



Chapter 1

23

There's more...
Through an optional parameter, pyplot.bar() provides a way to control the bar's thickness. 
Moreover, we can also obtain horizontal bars using the twin brother of pyplot.bar(), that 
is, pyplot.barh().

The thickness of a bar
By default, a bar will have a thickness of 0.8 units. Because we put a bar at each unit length, 
we have a gap of 0.2 between them. You can, of course, fiddle with this thickness parameter. 
For instance, by setting it to 1:

import matplotlib.pyplot as plt

data = [5., 25., 50., 20.]

plt.bar(range(len(data)), data, width = 1.)
plt.show()

The preceding minimalistic script will produce the following graph:

Now, the bars have no gap between them. The matplotlib bar chart function pyplot.bar() 
will not handle the positioning and thickness of the bars. The programmer is in charge. This 
flexibility allows you to create many variations on bar charts.



First Steps

24

Horizontal bars
If you are more into horizontal bars, use the barh() function, which is the strict equivalent of 
bar(), apart from giving horizontal rather than vertical bars:

import matplotlib.pyplot as plt

data = [5., 25., 50., 20.]

plt.barh(range(len(data)), data)
plt.show()

The preceding script will produce the following graph:



Chapter 1

25

Plotting multiple bar charts
When comparing several quantities and when changing one variable, we might want a bar 
chart where we have bars of one color for one quantity value.

How to do it...
We can plot multiple bar charts by playing with the thickness and the positions of the bars  
as follows:

import numpy as np
import matplotlib.pyplot as plt

data = [[5., 25., 50., 20.],
  [4., 23., 51., 17.],
  [6., 22., 52., 19.]]

X = np.arange(4)
plt.bar(X + 0.00, data[0], color = 'b', width = 0.25)
plt.bar(X + 0.25, data[1], color = 'g', width = 0.25)
plt.bar(X + 0.50, data[2], color = 'r', width = 0.25)

plt.show()

The preceding script will produce the following graph:



First Steps

26

How it works...
The data variable contains three series of four values. The preceding script will show three 
bar charts of four bars. The bars will have a thickness of 0.25 units. Each bar chart will be 
shifted 0.25 units from the previous one. Color has been added for clarity. This topic will be 
detailed in Chapter 2, Customizing the Color and Styles.

There's more...
The code shown in the preceding section is quite tedious as we repeat ourselves by shifting 
the three bar charts manually. We can do this better by using the following code:

import numpy as np
import matplotlib.pyplot as plt

data = [[5., 25., 50., 20.],
  [4., 23., 51., 17.],
  [6., 22., 52., 19.]]

color_list = ['b', 'g', 'r']
gap = .8 / len(data)
for i, row in enumerate(data):
  X = np.arange(len(row))
  plt.bar(X + i * gap, row,
    width = gap,
    color = color_list[i % len(color_list)])

plt.show()

Here, we iterate over each row of data with the loop for i, row in enumerate(data). 
The iterator enumerate returns both the current row and its index. Generating the position  
of each bar for one bar chart is done with a list comprehension. This script will produce  
the same result as the previous script, but would not require any change if we add rows  
or columns of data.



Chapter 1

27

Plotting stacked bar charts
Stacked bar charts are of course possible by using a special parameter from the pyplot.
bar() function.

How to do it...
The following script stacks two bar charts on each other:

import matplotlib.pyplot as plt

A = [5., 30., 45., 22.]
B = [5., 25., 50., 20.]

X = range(4)

plt.bar(X, A, color = 'b')
plt.bar(X, B, color = 'r', bottom = A)
plt.show()

The preceding script will produce the following graph:



First Steps

28

How it works...
The optional bottom parameter of the pyplot.bar() function allows you to specify a 
starting value for a bar. Instead of running from zero to a value, it will go from the bottom to 
value. The first call to pyplot.bar() plots the blue bars. The second call to pyplot.bar() 
plots the red bars, with the bottom of the red bars being at the top of the blue bars.

There's more...
When stacking more than two set of values, the code gets less pretty as follows:

import numpy as np
import matplotlib.pyplot as plt

A = np.array([5., 30., 45., 22.])
B = np.array([5., 25., 50., 20.])
C = np.array([1.,  2.,  1.,  1.])
X = np.arange(4)

plt.bar(X, A, color = 'b')
plt.bar(X, B, color = 'g', bottom = A)
plt.bar(X, C, color = 'r', bottom = A + B)

plt.show()

For the third bar chart, we have to compute the bottom values as A + B, the coefficient-wise 
sum of A and B. Using NumPy helps to keep the code compact but readable. This code is, 
however, fairly repetitive and works for only three stacked bar charts. We can do better using  
the following code:

import numpy as np
import matplotlib.pyplot as plt

data = np.array([[5., 30., 45., 22.],
  [5., 25., 50., 20.],
  [1.,  2.,  1.,  1.]]

color_list = ['b', 'g', 'r']

X = np.arange(data.shape[1])
for i in range(data.shape[0]):
  plt.bar(X, data[i],
    bottom = np.sum(data[:i], axis = 0),
    color = color_list[i % len(color_list)])

plt.show()



Chapter 1

29

Here, we store the data in a NumPy array, one row for one bar chart. We iterate over each  
row of data. For the ith row, the bottom parameter receives the sum of all the rows before  
the ith row. Writing the script this way, we can stack as many bar charts as we wish with 
minimal effort when changing the input data.

Plotting back-to-back bar charts
A simple but useful trick is to display two bar charts back-to-back at the same time. Think of an 
age pyramid of a population, showing the number of people within different age ranges. On the 
left side, we show the male population, while on the right we show the female population.

How to do it...
The idea is to have two bar charts, using a simple trick, that is, the length/height of one bar 
can be negative!

import numpy as np
import matplotlib.pyplot as plt

women_pop = np.array([5., 30., 45., 22.])
men_pop     = np.array( [5., 25., 50., 20.])



First Steps

30

X = np.arange(4)

plt.barh(X, women_pop, color = 'r')
plt.barh(X, -men_pop, color = 'b')
plt.show()

The preceding script will produce the following graph:

How it works...
The bar chart for the female population (in red) is plotted as usual. However, the bar chart for 
the male population (in blue) has its bar extending to the left rather than the right. Indeed, the 
lengths of the bars for the blue bar chart are negative values. Rather than editing the input 
values, we use a list comprehension to negate values for the male population bar chart.



Chapter 1

31

Plotting pie charts
To compare the relative importance of quantities, nothing like a good old pie—pie chart, that is.

How to do it...
The dedicated pie-plotting function pyplot.pie() will do the job. We will use this function in 
the following code:

import matplotlib.pyplot as plt

data = [5, 25, 50, 20]

  plt.pie(data)
plt.show()

The preceding simple script will display the following pie diagram:

How it works...
The pyplot.pie() function simply takes a list of values as the input. Note that the input 
data is a list; it could be a NumPy array. You do not have to adjust the data so that it adds  
up to 1 or 100. You just have to give values to matplolib and it will automatically compute  
the relative areas of the pie chart.



First Steps

32

Plotting histograms
Histograms are graphical representations of a probability distribution. In fact, a histogram 
is just a specific kind of a bar chart. We could easily use matplotlib's bar chart function 
and do some statistics to generate histograms. However, histograms are so useful that 
matplotlib provides a function just for them. In this recipe, we are going to see how to  
use this histogram function.

How to do it...
The following script draws 1000 values from a normal distribution and then generates 
histograms with 20 bins:

import numpy as np
import matplotlib.pyplot as plt

X = np.random.randn(1000)

plt.hist(X, bins = 20)
plt.show()

The histogram will change a bit each time we run the script as the dataset is randomly 
generated. The preceding script will display the following graph:



Chapter 1

33

How it works...
The pyplot.hist() function takes a list of values as the input. The range of the values will be 
divided into equal-sized bins (10 bins by default). The pyplot.hist() function will generate 
a bar chart, one bar for one bin. The height of one bar is the number of values following in the 
corresponding bin. The number of bins is determined by the optional parameter bins. By setting 
the optional parameter normed to True, the bar height is normalized and the sum of all bar 
heights is equal to 1.

Plotting boxplots
Boxplot allows you to compare distributions of values by conveniently showing the median, 
quartiles, maximum, and minimum of a set of values.

How to do it...
The following script shows a boxplot for 100 random values drawn from a normal distribution:

import numpy as np
import matplotlib.pyplot as plt

data = np.random.randn(100)

plt.boxplot(data)
plt.show()

A boxplot will appear that represents the samples we drew from the random distribution.  
Since the code uses a randomly generated dataset, the resulting figure will change slightly 
every time the script is run.



First Steps

34

The preceding script will display the following graph:

How it works...
The data = [random.gauss(0., 1.) for i in range(100)] variable generates 
100 values drawn from a normal distribution. For demonstration purposes, such values are 
typically read from a file or computed from other data. The plot.boxplot() function takes 
a set of values and computes the mean, median, and other statistical quantities on its own.  
The following points describe the preceding boxplot:

ff The red bar is the median of the distribution.

ff The blue box includes 50 percent of the data from the lower quartile to the upper 
quartile. Thus, the box is centered on the median of the data.

ff The lower whisker extends to the lowest value within 1.5 IQR from the lower quartile.

ff The upper whisker extends to the highest value within 1.5 IQR from the upper quartile.

ff Values further from the whiskers are shown with a cross marker.



Chapter 1

35

There's more...
To show more than one boxplot in a single graph, calling pyplot.boxplot() once for  
each boxplot is not going to work. It will simply draw the boxplots over each other, making  
a messy, unreadable graph. However, we can draw several boxplots with just one single  
call to pyplot.boxplot() as follows:

import numpy as np
import matplotlib.pyplot as plt

data = np.random.randn(100, 5)

plt.boxplot(data)
plt.show()

The preceding script displays the following graph:

The pyplot.boxplot() function accepts a list of lists as the input, rendering a boxplot for 
each sublist.



First Steps

36

Plotting triangulations
Triangulations arise when dealing with spatial locations. Apart from showing distances 
between points and neighborhood relationships, triangulation plots can be a convenient  
way to represent maps. matplotlib provides a fair amount of support for triangulations.

How to do it...
As in the preceding examples, the following few lines of code are enough:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.tri as tri

data = np.random.rand(100, 2)

triangles = tri.Triangulation(data[:,0], data[:,1])

plt.triplot(triangles)
plt.show()

Every time the script is run, you will see a different triangulation as the cloud of points that is 
triangulated is generated randomly.

The preceding script displays the following graph:



Chapter 1

37

How it works...
We import the matplotlib.tri module, which provides helper functions to compute 
triangulations from points. In this example, for demonstration purpose, we generate a  
random cloud of points using the following code:

data = np.random.rand(100, 2)

We compute a triangulation and store it in the triangles' variable with the help of the  
following code:

triangles = tri.Triangulation(data[:,0], data[:,1])

The pyplot.triplot() function simply takes triangles as inputs and displays the 
triangulation result.





2
Customizing the Color  

and Styles

In this chapter, we will cover:

ff Defining your own colors

ff Using custom colors for scatter plots

ff Using custom colors for bar charts

ff Using custom colors for pie charts

ff Using custom colors for boxplots

ff Using colormaps for scatter plots

ff Using colormaps for bar charts

ff Controlling a line pattern and thickness

ff Controlling a fill pattern

ff Controlling a marker's style

ff Controlling a marker's size

ff Creating your own markers

ff Getting more control over markers

ff Creating your own color scheme



Customizing the Color and Styles

40

Introduction
All the plots available with matplotlib come with their default styles. While this is convenient 
for prototyping, our finalized graph will require some departure from the default styles. You 
might need to use gray levels only, or follow an existing color scheme, or more generally, an 
existing visual chart. matplotlib has been designed with flexibility in mind. It is easy to adapt 
the style of a matplotlib figure, as the recipes of this chapter will illustrate.

Defining your own colors
The default colors used by matplotlib are rather bland. We might have our own preferences 
of what convenient colors are. We might want to have figures that follow a predefined color 
scheme so that they fit well within a document or a web page. More pragmatically, we might 
simply have to make figures for a document that will be printed on a black-and-white printer.  
In this recipe, we are going to see how to define our own colors.

Getting ready
There are multiple ways to define colors in matplotlib. Some of them are as follows:

ff Triplets: These colors can be described as a real value triplet—the red, blue, and 
green components of a color. The components have to be in the [0, 1] interval.  
Thus, the Python syntax (1.0, 0.0, 0.0) will code a pure, bright red, while  
(1.0, 0.0, 1.0) appears as a strong pink.

ff Quadruplets: These work as triplets, and the fourth component defines a transparency 
value. This value should also be in the [0, 1] interval. When rendering a figure to 
a picture file, using transparent colors allows for making figures that blend with a 
background. This is especially useful when making figures that will slide or end up  
on a web page.

ff Predefined names: matplotlib will interpret standard HTML color names as an  
actual color. For instance, the string red will be accepted as a color and will be 
interpreted as a bright red. A few colors have a one-letter alias, which is shown  
in the following table:

Alias Colors
b Blue
g Green
r Red
c Cyan
m Magenta



Chapter 2

41

Alias Colors
y Yellow
k Black
w White

ff HTML color strings: matplotlib can interpret HTML color strings as actual colors. 
Such strings are defined as #RRGGBB where RR, GG, and BB are the 8-bit values  
for the red, green, and blue components in hexadecimal.

ff Gray-level strings: matplotlib will interpret a string representation of a floating point 
value as a shade of gray, such as 0.75 for a medium light gray.

How to do it...
Setting the color of a curve plot is done by setting the parameter color (or the equivalent 
shortcut c) of the pyplot.plot() function as follows:

import numpy as np
import matplotlib.pyplot as plt

def pdf(X, mu, sigma):
  a = 1. / (sigma * np.sqrt(2. * np.pi))
  b = -1. / (2. * sigma ** 2)
  return a * np.exp(b * (X - mu) ** 2)

X = np.linspace(-6, 6, 1000)

for i in range(5):
  samples = np.random.standard_normal(50)
  mu, sigma = np.mean(samples), np.std(samples)
  plt.plot(X, pdf(X, mu, sigma), color = '.75')

plt.plot(X, pdf(X, 0., 1.), color = 'k')
plt.show()



Customizing the Color and Styles

42

The preceding script will produce a graph similar to the following one, which displays five light 
gray, bell-shaped curves and a black one:

How it works...
In this example, we generate five sets of 50 samples from a normal distribution. For each of 
the five sets, we plot the estimated probability density in light gray. The normal distribution 
probability density is shown in black. There, the color is coded using the shortcut for black, 
that is, k.

Using custom colors for scatter plots
We can control the colors used for a scatter plot just as we do for a curve plot. In this recipe, 
we are going to see how to use the two ways to control the colors of a scatter plot.

Getting ready
The scatter plot function pyplot.scatter() offers the following two options to control the 
colors of dots through its color parameter, or its shortcut c:

ff Common color for all the dots: If the color parameter is a valid matplotlib color 
definition, then all the dots will appear in that color.



Chapter 2

43

ff Individual color for each dot: If the color parameter is a sequence of a valid 
matplotlib color definition, the ith dot will appear in the ith color. Of course,  
we have to give the required colors for each dot.

How to do it...
In the following script, we display two sets of points, A and B, drawn from two bivariate 
Gaussian distributions. Each set has its own color. We call pyplot.scatter() twice,  
once for each point set, as shown in the following script:

import numpy as np
import matplotlib.pyplot as plt

A = np.random.standard_normal((100, 2))
A += np.array((-1, -1)) # Center the distrib. at <-1, -1>

B = np.random.standard_normal((100, 2))
B += np.array((1, 1)) # Center the distrib. at <1, 1>

plt.scatter(A[:,0], A[:,1], color = '.25')
plt.scatter(B[:,0], B[:,1], color = '.75')
plt.show()

The preceding script will produce the following graph:



Customizing the Color and Styles

44

Thus, in this example, custom colors are used exactly like in pyplot.plot(). In the 
following script, things will be different. We load an array from a text file, the Fisher's  
iris dataset, available at http://archive.ics.uci.edu/ml/datasets/Iris.  
Its content looks like the following:

4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor

Each point of the dataset is stored in a comma-separated list of values. The last column that 
gives the label of each point is a string that can take three possible values—Iris-virginica, 
Iris-versicolor, and Iris-Vertosa. We read this file using NumPy's numpy.loadtxt 
function. The color of points will depend on their label, and we will display them with just one  
call to pyplot.scatter() as follows:

import numpy as np
import matplotlib.pyplot as plt

label_set = (
  b'Iris-setosa',
  b'Iris-versicolor',
  b'Iris-virginica',
)

def read_label(label):
  return label_set.index(label)

data = np.loadtxt('iris.data.txt',
                             delimiter = ',',
                             converters = { 4 : read_label })

color_set = ('.00', '.50', '.75')
color_list = [color_set[int(label)] for label in data[:,4]]

plt.scatter(data[:,0], data[:,1], color = color_list)
plt.show()



Chapter 2

45

The preceding script will produce the following graph:

How it works...
For each of the three possible labels, we assign one unique color. The colors are defined 
in color_set and the labels are defined in label_set. The ith label in label_set is 
associated with the ith color in color_set.

We convert the list of labels, label_list, to a list of colors, color_list, with a list 
comprehension. We then need just one call to pyplot.scatter() to display all the  
points with their colors. We could have done this with three separate calls, but it would  
require more code for no tangible gain.

It's possible for two points to have the same coordinate and yet have a different label.  
In such a case, the color shown will be the color of the latest point drawn. Using transparent 
colors, the colors of overlapping points will be blended together.



Customizing the Color and Styles

46

There's more...
Just as the color parameter controls the color of the dots, the edgecolor parameter 
controls the color of the edge of the dots. It works strictly for the color parameter—you can 
set the same color for each dot edge or control the edge color individually as follows:

import numpy as np
import matplotlib.pyplot as plt

data = np.random.standard_normal((100, 2))

plt.scatter(data[:,0], data[:,1], color = '1.0', edgecolor='0.0')
plt.show()

The preceding script will produce the following graph:

Using custom colors for bar charts
Bar charts are used a lot in web pages and presentations where one often has to follow  
an established color scheme. Thus, a good control on their colors is a must. In this recipe,  
we are going to see how to color a bar chart with our own colors.



Chapter 2

47

How to do it...
In Chapter 1, First Steps, we have already seen how to make bar charts. Controlling which 
colors are used works the same as it does for curves plots and scatter plots, that is, through 
an optional parameter. In this example, we load the age pyramid of a country's population 
from a file as follows:

import numpy as np
import matplotlib.pyplot as plt

women_pop = np.array([5., 30., 45., 22.])
men_pop     = np.array([5., 25., 50., 20.])

X = np.arange(4)
plt.barh(X, women_pop, color = '.25')
plt.barh(X, -men_pop, color = '.75')

plt.show()

The preceding script shows one bar chart with the age repartition for men and another bar  
chart for women. Women appear in dark gray, while men appear in light gray, as shown in  
the following graph:



Customizing the Color and Styles

48

How it works...
The pyplot.bar() and pyplot.barh() functions work strictly like pyplot.scatter(). 
We simply have to set the optional parameter color. The parameter edgecolor is also 
available.

There's more...
In this example, we display a bar chart and color the bars depending on the  
values they represent. A value in the [0, 24], [25, 49], [50, 74], [75, 100] range  
will appear in a different shade of gray for each bar. The list of colors is built  
using a list comprehension as follows:

import numpy as np
import matplotlib.pyplot as plt

values = np.random.random_integers(99, size = 50)

color_set = ('.00', '.25', '.50', '.75')
color_list = [color_set[(len(color_set) * val) // 100] for val in  
  values]
plt.bar(np.arange(len(values)), values, color = color_list)
plt.show()

The bars of the bar chart are colored according to their heights, as shown in the following graph:



Chapter 2

49

If we sort the values, the bars will form four distinct bands, as shown in the following graph:

Using custom colors for pie charts
Like bar charts, pie charts are also used in contexts where the color scheme might matter a 
lot. Pie chart coloring works mostly like in bar charts. In this recipe, we are going to see how  
to color pie charts with our own colors.

How to do it...
The function pyplot.pie() accepts a list of colors as an optional parameter, as shown in 
the following script:

import numpy as np
import matplotlib.pyplot as plt

values = np.random.rand(8)
color_set = ('.00', '.25', '.50', '.75')

plt.pie(values, colors = color_set)
plt.show()



Customizing the Color and Styles

50

The preceding script will produce the following pie chart:

How it works...
Pie charts accept a list of colors using the colors parameter (beware, it is colors, not 
color). However, the color list does not have as many elements as the input list of values.  
If there are less colors than values, then pyplot.pie() will simply cycle through the color 
list. In the preceding example, we gave a list of four colors to color a pie chart that consisted 
of eight values. Thus, each color will be used twice.

Using custom colors for boxplots
Boxplots are common staple features of scientific publications. Colored boxplots are no trouble; 
however, you may need to use black and white only. In this recipe, we are going to see how to 
use custom colors with boxplots.

How to do it...
Every function that creates a specific figure returns some values—they are the low-level drawing 
primitives that constitute the figure. Most of the time, we don't bother to get those return values. 
However, manipulating those low-level drawing primitives allows some fine-tuning, such as 
custom color schemes for a box plot.



Chapter 2

51

Making a boxplot appear totally black is a little bit trickier than it should be, as shown in the 
following script:

import numpy as np
import matplotlib.pyplot as plt
values = np.random.randn(100)

b = plt.boxplot(values)
for name, line_list in b.iteritems():
  for line in line_list:
    line.set_color('k')

plt.show()

The preceding script produces the following graph:



Customizing the Color and Styles

52

How it works...
Plotting functions returns a dictionary. The key of the dictionary is the name of the graphical 
elements. In the case of a boxplot, such elements will be medians, fliers, whiskers, boxes, and 
caps. The value associated with each of those keys is a list of low-level graphic primitives—
lines, shapes, and so on. In the script, we iterate every graphic primitive that is a part of the 
boxplot and set its color to black. The same method allows you to render boxplots with your 
own color schemes.

Using colormaps for scatter plots
When using a lot of colors, defining each color one by one is tedious. Moreover, building 
a good set of colors is a problem in itself. In some cases, colormaps can address those 
issues. Colormaps define colors with a continuous function of one variable to one value, 
corresponding to one color. matplotlib provides several common colormaps; most of them  
are continuous color ramps. In this recipe, we are going to see how to color scatter plots  
with a colormap.

How to do it...
Colormaps are defined in the matplotib.cm module. This module provides functions to 
create and use colormaps. It also provides an exhaustive choice of predefined color maps.

The function pyplot.scatter() accepts a list of values for the color parameter.  
When providing a colormap (with the cmap parameter), those values will be interpreted  
as a colormap index as follows:

import numpy as np
import matplotlib.cm as cm
import matplotlib.pyplot as plt

N = 256
angle  = np.linspace(0, 8 * 2 * np.pi, N)
radius = np.linspace(.5, 1., N)

X = radius * np.cos(angle)
Y = radius * np.sin(angle)

plt.scatter(X, Y, c = angle, cmap = cm.hsv)
plt.show()



Chapter 2

53

The preceding script will generate a colorful spiral of dots as shown in the following graph:



Customizing the Color and Styles

54

How it works...
In this script, we plot a spiral of dots. The dots are colored as a function of the angle variable, 
taking the color from a colormap. A large set of colormaps are available in the matplotlib.
cm module. The hsv map contains the full spectrum of colors, which makes for a fancy rainbow 
theme. For scientific visualization, other colormaps are more appropriate, taking into account 
the perceived color intensity, such as the PuOr map. The same script with the PuOr map will 
give us the following result:

Using colormaps for bar charts
The pyplot.scatter() function has a built-in support for colormaps; some other plotting 
functions that we will discover later also have such support. However, some functions, such 
as pyplot.bar(), do not take colormaps as inputs to plot bar charts. In this recipe, we are 
going to see how to color a bar chart with a colormap.

matplotlib has helper functions to explicitly generate colors from a colormap. For instance,  
we can color the bars of a bar chart with the functions of the values they represent.



Chapter 2

55

How to do it...
We will use the matplotlib.cm module in this recipe just as we did in the previous recipe. 
This time, we will directly use a colormap object rather than letting a rendering function use it 
automatically. We will also need the matplotlib.colors module, which contains the utility 
functions related to colors as shown in the following script:

import numpy as np
import matplotlib.cm as cm
import matplotlib.colors as col
import matplotlib.pyplot as plt

values = np.random.random_integers(99, size = 50)

cmap = cm.ScalarMappable(col.Normalize(0, 99), cm.binary)

plt.bar(np.arange(len(values)), values, color = cmap.to_rgba(values))
plt.show()

The preceding script will produce a bar chart where the color of a bar depends on its height, 
as shown in the following graph:



Customizing the Color and Styles

56

How it works...
We first create the colormap cmap so that it maps values from the [0, 99] range to the colors 
of the matplotlib.cm.binary colormap. Then, the function cmap.to_rgba converts the 
list of values to a list of colors. Thus, although pyplot.bar does not support colormaps, 
using colormaps does not involve complex code; there are functions to make this easy.

Note that if the list of values is sorted, the continuous aspect of the colormap used here 
becomes obvious, as shown in the follow graph:

Controlling a line pattern and thickness
When creating figures for black and white documents, we are limited to gray levels. In practice, 
three levels of gray are usually the most we can reasonably use. However, using different line 
patterns allows some diversity. In this recipe, we are going to see how to control line pattern 
and thickness.



Chapter 2

57

How to do it...
As in the case of colors, the line style is controlled by an optional parameter of pyplot.plot()
as shown in the following script:

import numpy as np
import matplotlib.pyplot as plt

def pdf(X, mu, sigma):
  a = 1. / (sigma * np.sqrt(2. * np.pi))
  b = -1. / (2. * sigma ** 2)
  return a * np.exp(b * (X - mu) ** 2)

X = np.linspace(-6, 6, 1024)

plt.plot(X, pdf(X, 0., 1.),   color = 'k', linestyle = 'solid')
plt.plot(X, pdf(X, 0.,  .5),  color = 'k', linestyle = 'dashed')
plt.plot(X, pdf(X, 0.,  .25), color = 'k', linestyle = 'dashdot')

plt.show()

The preceding script will produce the following graph:



Customizing the Color and Styles

58

How it works...
In this example, we use the linestyle parameter of pyplot.plot() to control the line 
pattern of three different curves. The following line styles are available:

ff Solid

ff Dashed

ff Dotted

ff Dashdot

There's more...
Line style settings are not limited to pyplot.plot(); in fact, any graphics made of lines 
allows such settings. Moreover, you can also control line thickness.

The line style with other plot types
The linestyle parameter is available for all the commands that involve line rendering.  
For instance, we can modify the line pattern used for a bar chart as follows:

import numpy as np
import matplotlib.pyplot as plt

N = 8
A = np.random.random(N)
B = np.random.random(N)
X = np.arange(N)

plt.bar(X, A, color = '.75')
plt.bar(X, A + B, bottom = A, color = 'w', linestyle = 'dashed')

plt.show()



Chapter 2

59

The preceding script will produce the following graph:

The line width
Likewise, the linewidth parameter will change the thickness of lines. By default, the 
thickness is set to 1 unit. Playing with the thickness of lines can help to put emphasis  
on one particular curve. The following is the script to set the thickness of lines using the 
linewidth parameter:

import numpy as np
import matplotlib.pyplot as plt

def pdf(X, mu, sigma):
  a = 1. / (sigma * np.sqrt(2. * np.pi))
  b = -1. / (2. * sigma ** 2)
  return a * np.exp(b * (X - mu) ** 2)

X = np.linspace(-6, 6, 1024)
for i in range(64):
  samples = np.random.standard_normal(50)
  mu, sigma = np.mean(samples), np.std(samples)
  plt.plot(X, pdf(X, mu, sigma), color = '.75', linewidth = .5)

plt.plot(X, pdf(X, 0., 1.), color = 'y', linewidth = 3.)
plt.show()



Customizing the Color and Styles

60

In the following graph, which is a result of the preceding script, 64 estimated Gaussians PDF 
(Probability Density Functions) are estimated from 50 samples and are shown as thin gray 
curves. The Gaussian distribution used to draw the samples is shown as a thick black curve.

Controlling a fill pattern
matplotlib offers fairly limited support to fill surfaces with a pattern. For line patterns, it can be 
helpful when preparing figures for black-and-white prints. In this recipe, we are going to look at 
how we can fill surfaces with a pattern.

How to do it...
Let's demonstrate the use of fill patterns with a bar chart as follows:

import numpy as np
import matplotlib.pyplot as plt

N = 8
A = np.random.random(N)



Chapter 2

61

B = np.random.random(N)
X = np.arange(N)

plt.bar(X, A, color = 'w', hatch = 'x')
plt.bar(X, A + B, bottom = A, color = 'w', hatch = '/')

plt.show()

The preceding script produces the following graph:

How it works...
Rendering function filling volumes, such as pyplot.bar(), accept an optional parameter, 
hatch. This parameter can take the following values:

ff /
ff \
ff |
ff -



Customizing the Color and Styles

62

ff +
ff x
ff o
ff O
ff .
ff *

Each value corresponds to a different hatching pattern. The color parameter will control  
the background color of the pattern, while the edgecolor parameter will control the color  
of the hatching.

Controlling a marker's style
In Chapter 1, First Steps, we have seen how we can display the points of a curve as dots.  
Also, scatter plots represent each point of a dataset. As it turns out, matplotlib offers a  
variety of shapes to replace dots with other kinds of markers. In this recipe, we are going  
to see how to set a marker's style.

Getting ready
Markers can be specified in various ways as follows:

ff Predefined markers: They can be predefined shapes, represented as a number in 
the [0, 8] range, or some strings

ff Vertices list: This is a list of value pairs, used as coordinates for the path of a shape

ff Regular polygon: It represents a triplet (N, 0, angle) for an N sided regular polygon, 
with a rotation of angle degrees

ff Start polygon: It represents a triplet (N, 1, angle) for an N sided regular star, with a 
rotation of angle degrees

How to do it...
Let's take a script that shows two sets of points with two different colors. Now we will display 
all the points in black, but with different markers as follows:

import numpy as np
import matplotlib.pyplot as plt

A = np.random.standard_normal((100, 2))
A += np.array((-1, -1))



Chapter 2

63

B = np.random.standard_normal((100, 2))
B += np.array((1, 1))

plt.scatter(A[:,0], A[:,1], color = 'k', marker = 'x')
plt.scatter(B[:,0], B[:,1], color = 'k', marker = '^')

plt.show()

Two Gaussian clouds of dots will appear, each using a different marker, as shown in the 
following graph:



Customizing the Color and Styles

64

How it works...
In this script, we set the color of both scatter plots to black. Using the marker parameter,  
we specify a different marker for each set.

Unlike the color parameter, the marker parameter does not accept a list of marker 
specifications as inputs. Thus, we cannot use one single call to pyplot.scatter()  
to display several set of points with different markers. We need to segregate points per  
type of marker and use a separate call to pyplot.scatter() for each set as follows:

import numpy as np
import matplotlib.pyplot as plt

label_list = (
  b'Iris-setosa',
  b'Iris-versicolor',
  b'Iris-virginica',
)

def read_label(label):
  return label_list.index(label)

data = np.loadtxt('iris.data.txt',
  delimiter = ',',
  converters = { 4 : read_label })

marker_set = ('^', 'x', '.')
for i, marker in enumerate(marker_set):
  data_subset = numpy.asarray([x for x in data if x[4] == i])
  plt.scatter(data_subset[:,0], data_subset[:,1],
    color = 'k',
    marker = marker)

plt.show()



Chapter 2

65

Each cluster from the dataset appears with its own marker as shown in the following graph:

This example is similar to the previous example where we load a dataset and display each point 
according to the label. Here, however, we segregate points per label. Then, we iterate through 
each entry of the map and call pyplot.scatter() for each subset of points.

There's more...
The marker style is also accessible for pyplot.plot() using the same marker parameter. 
Using one marker for each data point can be a problem as it will display more points than we 
want to. The markevery parameter allows you to display only one marker for every N points 
as shown in the following script:

import numpy as np
import matplotlib.pyplot as plt

X = np.linspace(-6, 6, 1024)
Y1 = np.sinc(X)
Y2 = np.sinc(X) + 1



Customizing the Color and Styles

66

plt.plot(X, Y1, marker = 'o', color = '.75')
plt.plot(X, Y2, marker = 'o', color = 'k', markevery = 32)

plt.show()

The preceding script produces the following graph:

Controlling a marker's size
As seen in the previous recipe, we can control the style of markers; controlling their size also 
works along the same lines. In this recipe, we are going to see how to control marker sizes.

How to do it...
A marker's size is controlled in the same way as other marker attributes, with a dedicated 
optional parameter as shown in the following script:

import numpy as np
import matplotlib.pyplot as plt
A = np.random.standard_normal((100, 2))
A += np.array((-1, -1))



Chapter 2

67

B = np.random.standard_normal((100, 2))
B += np.array((1, 1))

plt.scatter(B[:,0], B[:,1], c = 'k', s = 100.)
plt.scatter(A[:,0], A[:,1], c = 'w', s = 25.)

plt.show()

The preceding script produces the following graph:

In this example, we display two sets of points of different sizes. The marker's size is set by the 
parameter s for pyplot.scatter(). Oddly enough, it sets the surface area of a marker and 
not its radius.

Because the sizes are the actual surface areas and not the radii, they follow a quadratic 
progression—the markers that are four times larger will have radii that are two times larger.



Customizing the Color and Styles

68

There's more...
The pyplot.scatter() function also takes a list as an input for the s parameter—one size 
for each point as shown in the following script:

import numpy as np
import matplotlib.pyplot as plt

M = np.random.standard_normal((1000, 2))
R = np.sum(M ** 2, axis = 1)

plt.scatter(M[:, 0], M[:, 1], c = 'w', marker = 's', s = 32. * R)
plt.show()

The preceding script produces the following graph:

In this script, we drew random points according to a bivariate Gaussian distribution.  
The radius of a point depends on its distance from the origin.

The pyplot.plot() function also allows to change the size of the markers with the  
help of the markersize (or its shortcut ms) parameter. This parameter does not accept  
a list of values as an input.



Chapter 2

69

Creating your own markers
matplotlib offers a large variety of marker shapes. But you might not find something that suits 
your specific need. For instance, you might wish to use an animal silhouette, a company's logo, 
and so on. In this recipe, we are going to see how to define our own marker shapes.

How to do it...
matplotlib describes shapes as a path—a sequence of points linked together. Thus, to define our 
own marker shapes, we have to provide a sequence of points. In the following script example,  
we will define a cross-like shape:

import numpy as np
import matplotlib.path as mpath
from matplotlib import pyplot as plt

shape_description = [
  ( 1.,  2., mpath.Path.MOVETO),
  ( 1.,  1., mpath.Path.LINETO),
  ( 2.,  1., mpath.Path.LINETO),
  ( 2., -1., mpath.Path.LINETO),
  ( 1., -1., mpath.Path.LINETO),
  ( 1., -2., mpath.Path.LINETO),
  (-1., -2., mpath.Path.LINETO),
  (-1., -1., mpath.Path.LINETO),
  (-2., -1., mpath.Path.LINETO),
  (-2.,  1., mpath.Path.LINETO),
  (-1.,  1., mpath.Path.LINETO),
  (-1.,  2., mpath.Path.LINETO),
  ( 0.,  0., mpath.Path.CLOSEPOLY),
]

u, v, codes = zip(*shape_description)
my_marker = mpath.Path(np.asarray((u, v)).T, codes)
data = np.random.rand(8, 8)
plt.scatter(data[:,0], data[:, 1], c = '.75', marker = my_marker,  
  s = 64)
plt.show()



Customizing the Color and Styles

70

The preceding script produces the following graph:

How it works...
All the pyplot functions that render figures with markers have an optional argument, that is, 
marker. We have seen in the previous recipe that an argument can be a string to pick one of 
the predefined matplotlib markers. But the marker argument can be an instance of Path as 
well. The Path object is defined in the matplotlib.path module.

The constructor for the Path object takes a list of coordinates and a list of instructions as 
inputs; one instruction per coordinate. Rather than having two separate lists for coordinates 
and instructions, we use a single list shape_description, fusing together coordinates and 
instructions. A bit of code is used to manipulate shape_description and feed separate 
lists of coordinates and instructions to the Path constructor as follows:

u, v, codes = zip(*shape_description)
my_marker = mpath.Path(np.asarray((u, v)).T, codes)



Chapter 2

71

Shapes are described by the movements of a cursor. We use the following three types  
of instructions:

ff MOVETO: This instruction will move the cursor to the specified coordinates; no line  
is drawn.

ff LINETO: This will move the cursor to the specified coordinates, while drawing a line.
ff CLOSEPOLY: It won't do anything, it will close the path. Your path will be concluded  

by this instruction.

In theory, any shape is possible, you simply need to describe its path. In practice, if you 
wish to use a complex shape (for instance, the logo of a company), you will have to do some 
conversion work. matplotlib does not provide conversion routines from popular vector file 
formats (such as SVG) to Path objects.

Getting more control over markers
Fine controls, such as edge color, interior color, and so on, are possible on markers. It is, for 
instance, possible to draw a curve with markers of a different color than the color of the curve. 
In this recipe, we will look at how to have a fine control on a marker's aspect.

How to do it...
We have learned about the optional parameters to set the shape, color, and size of markers. 
There are plenty of others to play with, as demonstrated in the following script:

import numpy as np
import matplotlib.pyplot as plt

X = np.linspace(-6, 6, 1024)
Y = np.sinc(X)

plt.plot(X, Y,
  linewidth = 3.,
  color = 'k',
  markersize = 9,
  markeredgewidth = 1.5,
  markerfacecolor = '.75',
  markeredgecolor = 'k',
  marker = 'o',
  markevery = 32)
plt.show()



Customizing the Color and Styles

72

The call to pyplot.plot() is broken over several lines for the readability purpose—one line per 
optional parameter. The preceding script will produce the following graph:

How it works...
This example demonstrates the use of the markeredgecolor, markerfacecolor, and 
markeredgewidth parameters, which controls the edge color, the inside color, and the 
line width of a marker, respectively. All rendering functions that can use markers, such as 
pyplot.plot, accept those optional parameters.

Creating your own color scheme
The default colors used by matplotlib are meant to be reasonably publication-ready for  
printed documents. Thus, the background is white by default, while the labels, axes, and  
other annotations appear in black. In a different usage context, you might prefer a different 
color scheme; for instance, having the figure's background turned to black with the annotation 
in white. In this recipe, we will show how to change matplotlib's default settings.



Chapter 2

73

How to do it...
In matplotlib, various objects, such as axes, figures, and labels can be addressed 
individually. Changing the color settings of all those objects, one by one, would be  
very cumbersome. Fortunately, all matplotlib objects choose their default colors  
from a centralized configuration object.

In the following script, we use matplotlib's centralized configuration to have a black 
background and white annotations:

import numpy as np
import matplotlib as mpl
from matplotlib import pyplot as plt

mpl.rc('lines', linewidth = 2.)
mpl.rc('axes', facecolor = 'k', edgecolor = 'w')
mpl.rc('xtick', color = 'w')
mpl.rc('ytick', color = 'w')
mpl.rc('text', color = 'w')
mpl.rc('figure', facecolor = 'k', edgecolor ='w')
mpl.rc('axes', color_cycle = ('w', '.5', '.75'))

X = np.linspace(0, 7, 1024)

plt.plot(X, np.sin(X))
plt.plot(X, np.cos(X))
plt.show()



Customizing the Color and Styles

74

The preceding script produces the following graph:

How it works...
The matplotlib module has an rc object that acts as a centralized configuration. Every 
matplotlib object will pick its default settings from that rc object. The rc object holds a set 
of properties and associated values. For instance, mpl.rc('lines', linewidth = 2.) 
will set the property lines.linewidth to 2; by default, lines will have now a width of two. 
Here, we set the background of the figure to black (using the figure.facecolor and 
axes.facecolor properties), while we set all the annotations to white (using the figure.
edgecolor, axes.edgecolor, text.color, xtick.color, ytick.color properties). 
We also redefine the colors automatically picked by matplotlib with the axes.color_cycle 
property. A good reference for matplotlib's properties is available at http://matplotlib.
org/_static/matplotlibrc.



Chapter 2

75

There's more...
We now know how to change matplotlib's default settings to suit our tastes. However, if we want 
all our scripts to use those settings, we have to copy and paste them. This is very inconvenient. 
Fortunately, default settings can be saved in a matplotlibrc file. A maptplotlibrc file is  
a plain text file that contains properties and their corresponding values; one property per line. 
The following is the settings of this recipe in the matplotlibrc format:

lines.linewidth : 2
axes.facecolor : black
axes.edgecolor : white
xtick.color : white
ytick.color : white
text.color : white
figure.facecolor : black
figure.edgecolor : white
axes.color_cycle : white, #808080, #b0b0b0

If a matplotlibrc file is found in your current directory (that is, the directory from where you 
launched your script from), it will override matplotlib's default settings.

You can also save your matplotlibrc file in a specific location to make your own default 
settings. In the interactive Python shell, run the following command:

import matplotlib
mpl.get_configdir()

This command will display the location where you can place your matplotlibrc file so that 
those settings will be your own default settings.





3
Working with 
Annotations

In this chapter, we will cover the following topics:

ff Adding a title

ff Using LaTeX-style notations

ff Adding a label to each axis

ff Adding text

ff Adding arrows

ff Adding a legend

ff Adding a grid

ff Adding lines

ff Adding shapes

ff Controlling tick spacing

ff Controlling tick labeling

Introduction
It is considered a good practice to make your figures self-explanatory. However, it can be hard 
to make some curves and dots self-explanatory without any annotations. How should one read 
the vertical and horizontal axes? Which quantity is represented by that box and this curve? 
matplotlib offers a great number of possibilities to annotate a figure, which we are going to 
explore in this chapter.



Working with Annotations

78

Adding a title
Let's start with something simple: adding a title to a graphic.

How to do it...
The following code will add a title to the figure:

import numpy as np
import matplotlib.pyplot as plt

X = np.linspace(-4, 4, 1024)
Y = .25 * (X + 4.) * (X + 1.) * (X - 2.)

plt.title('A polynomial')
plt.plot(X, Y, c = 'k')
plt.show()

Here, we render a simple curve and add a title to the figure, which appears at the top of  
the figure:

How it works...
It's simply done with the pyplot.title()function, which takes one string as a parameter 
and sets the title for the whole figure.



Chapter 3

79

Using LaTeX-style notations
We can now annotate figures. However, in a scientific and engineering context, the solution 
demonstrated previously suffers from one annoying limitation. We cannot use mathematical 
notations! Or, can we? In this recipe, we are going to see how to use LaTeX to display 
mathematical scripts in a figure.

Getting ready
You need a working LaTeX setup installed on your computer so that matplotlib can interpret 
a LaTeX-style notation to render mathematical text. Fall short of this, and you will not be able 
to try this recipe. You can find useful explanations on installing LaTeX on the LaTeX Wikibook 
(http://en.wikibooks.org/wiki/LaTeX/Installation).

LaTeX
LaTeX is a document preparation system widely used in academia. Unlike 
document editors such as Microsoft Word or LibreOffice Writer, a LaTeX user 
cannot see how the final document will look while editing it. Documents are 
described as a mix of text and commands stored in a plain text file. Then, 
LaTeX will interpret the document description to render a document. LaTeX 
is a fairly large environment. LaTeX has a specific language to describe 
mathematical text. This language is so popular that it became a de facto 
standard to simply write formulae rather than render them. For instance, 
in the science and engineering community, LaTeX's formula language is 
commonly used to write mathematical text in e-mails and forums.

How to do it...
Rendering some text with LaTeX is surprisingly simple:

import numpy as np
import matplotlib.pyplot as plt

X = np.linspace(-4, 4, 1024)
Y = .25 * (X + 4.) * (X + 1.) * (X - 2.)

plt.title('$f(x)=\\frac{1}{4}(x+4)(x+1)(x-2)$')
plt.plot(X, Y, c = 'k')
plt.show()



Working with Annotations

80

This script does exactly what we did in the previous recipe: it shows a figure with a title at the 
top. However, as the title of the recipe might hint it, the title is rendered with LaTeX, allowing 
us to use mathematical notations.

How it works...
The only difference with the usual way to set a title is the string given to pyplot.title(). 
The string starts and ends with the $ character; this is to signal matplotlib to interpret 
and render the text as a LaTeX-style mathematical text. Then, the string content is just the 
standard LaTeX language for the mathematical text.

The LaTeX language relies heavily on the escape character, \, which also happens to be the 
string escape character for Python. Thus, where you would use one \ character in a LaTeX 
text, put two in your Python string. To avoid fumbling with escape characters, you can prefix 
your string with r and you won't need any escape characters. Thus, '$f(x)=\\frac{1}{4}
(x+4)(x+1)(x-2)$' and r'$f(x)=\frac{1}{4}(x+4)(x+1)(x-2)$' are equivalent.



Chapter 3

81

You don't know the LaTeX language for mathematical text? No 
worries, you can learn it quickly! In the matplotlib context, you can 
find the definitive guide at http://matplotlib.org/users/
mathtext.html. A fairly complete tutorial can be found at 
http://en.wikibooks.org/wiki/LaTeX/Mathematics.

This LaTeX-notation feature is not limited to titles; it can be used for any annotation. Here,  
we simply demonstrate this on the title text.

Adding a label to each axis
After a title, a proper description of the figure's axis helps a great deal for users understand a 
graphic. In this recipe, we will show you how to get a label next to each axis of a figure.

How to do it...
Adding such annotations is very simple, as demonstrated in the following example:

import numpy as np
import matplotlib.pyplot as plt

X = np.linspace(-4, 4, 1024)
Y = .25 * (X + 4.) * (X + 1.) * (X - 2.)

plt.title('Power curve for airfoil KV873')
plt.xlabel('Air speed')
plt.ylabel('Total drag')

plt.plot(X, Y, c = 'k')
plt.show()



Working with Annotations

82

The figure will be the same as the one obtained in the first recipe of this chapter. However, 
both the axes will feature a legend.

How it works...
We use the pyplot.xlabel() and pyplot.ylabel()functions to add a description of the 
horizontal axis and the vertical axis, respectively. As for the pyplot.title() function, this 
function accepts the LaTeX notation. These functions are available for any kind of graphic; you 
would use the same functions to annotate a scatter plot, a histogram, and so on.

Adding text
So far, we have seen how to set text at preset locations, such as title and axes. In this recipe, 
we are going to see how to add text at any location using text boxes.

How to do it...
matplotlib has a very flexible function called pyplot.text(), that displays text:

import numpy as np
import matplotlib.pyplot as plt



Chapter 3

83

X = np.linspace(-4, 4, 1024)
Y = .25 * (X + 4.) * (X + 1.) * (X - 2.)

plt.text(-0.5, -0.25, 'Brackmard minimum')

plt.plot(X, Y, c = 'k')
plt.show()

This script displays text next to a curve:

How it works...
We use the pyplot.text() function that takes a position and the text to display. The position 
is given in the graphic coordinates, specifying the position of the left border and the vertical 
baseline of the text.



Working with Annotations

84

There's more...
matplotlib's text rendering is very flexible. Let's explore the important options available.

Alignment control
The text is bound by a box. This box is used to relatively align the text to the coordinates 
passed to pyplot.text(). Using the verticalalignment and horizontalalignment 
parameters (respective shortcut equivalents are va and ha), we can control how the alignment 
is done.

The vertical alignment options are as follows:

ff 'center': This is relative to the center of the textbox

ff 'top': This is relative to the upper side of the textbox

ff 'bottom': This is relative to the lower side of the textbox

ff 'baseline': This is relative to the text's baseline

The horizontal alignment options are as follows:

ff 'center': This is relative to the center of the textbox

ff 'left': This is relative to the left side of the textbox

ff 'right': This is relative to the right-hand side of the textbox



Chapter 3

85

Bounding box control
The pyplot.text() function supports a bbox parameter that takes a dictionary as the 
input. This dictionary defines the various settings for the text box. Here's an illustration:

import numpy as np
import matplotlib.pyplot as plt

X = np.linspace(-4, 4, 1024)
Y = .25 * (X + 4.) * (X + 1.) * (X - 2.)

box = {
  'facecolor'  : '.75',
  'edgecolor' : 'k',
  'boxstyle'    : 'round'
}

plt.text(-0.5, -0.20, 'Brackmard minimum', bbox = box)

plt.plot(X, Y, c='k')
plt.show()

The preceding code will give the following output:



Working with Annotations

86

The dictionary passed to the bbox parameter defines the following key-value pairs:

ff 'facecolor': This is the color used for the box. It will be used to set the 
background and the edge color

ff 'edgecolor': This is the color used for the edges of the box's shape

ff 'alpha': This is used to set the transparency level so that the box blends  
with the background

ff 'boxstyle': This sets the style of the box, which can either be 'round'  
or 'square'

ff 'pad': If 'boxstyle' is set to 'square', it defines the amount of padding 
between the text and the box's sides

Adding arrows
Adding text boxes can help you to annotate a figure. However, to show a specific part of a 
picture, nothing beats the use of an arrow. In this recipe, we will show you how to add arrows 
on a figure.

How to do it...
matplotlib has a function to draw arrows with the pyplot.annotate() function as shown  
in the following code snippet:

import numpy as np
import matplotlib.pyplot as plt

X = np.linspace(-4, 4, 1024)
Y = .25 * (X + 4.) * (X + 1.) * (X - 2.)

plt.annotate('Brackmard minimum',
ha = 'center', va = 'bottom',
xytext = (-1.5, 3.),
xy = (0.75, -2.7),
arrowprops = { 'facecolor' : 'black', 'shrink' : 0.05 })

plt.plot(X, Y)
plt.show()



Chapter 3

87

This script annotates a curve with text and an arrow, as shown in the following graph:

How it works...
The pyplot.annotate() function shows text working on the same lines as pyplot.
text(). However, an arrow is also rendered. The text to be displayed is the first parameter. 
The xy parameter specifies the arrow's destination. The xytext parameter specifies the 
text position. Similar to pyplot.text(), one can play with the text alignment through the 
horizontalalignment and verticalalignment parameters. The shrink parameter 
controls the gap between the arrow's endpoints and the arrow itself.

The aspect of the arrow is controlled by a dictionary passed to the arrowprops parameter:

ff 'arrowstyle': The parameters ''<-'', ''<'', ''-'', ''wedge'', 
''simple'', and "fancy" control the style of the arrow

ff 'facecolor': This is the color used for the arrow. It will be used to set the 
background and the edge color

ff 'edgecolor': This is the color used for the edges of the arrow's shape



Working with Annotations

88

ff 'alpha': This is used to set the transparency level so that the arrow blends  
with the background

Adding a legend
A proper figure is not complete without its own legend. matplotlib provides a way to generate  
a legend with the minimal amount of effort. In this recipe, we will see how to add a legend to  
a graph.

How to do it...
For this recipe, we use the pyplot.legend() function as well as the label optional 
parameter:

import numpy as np
import matplotlib.pyplot as plt

X = np.linspace(0, 6, 1024)
Y1 = np.sin(X)
Y2 = np.cos(X)

plt.xlabel('X')
plt.ylabel('Y')

plt.plot(X, Y1, c = 'k',  lw = 3.,              label = 'sin(X)')
plt.plot(X, Y2, c = '.5', lw = 3., ls = '--', label = 'cos(X)')

plt.legend()
plt.show()



Chapter 3

89

The preceding code gives the following output:

How it works...
Each pyplot function has an optional label parameter to name an element, such as  
curve, histogram, and so on, of a figure. matplotlib keeps a track of these labels. The pyplot.
legend() function will render a legend. The legend is automatically generated from the labels.

There's more...
The pyplot.legend function has a couple of interesting parameters to control the  
legend aspects:

ff 'loc': This is the location of the legend. The default value is 'best', which will 
place it automatically. Other valid values are 'upper left', 'lower left', 
'lower right', 'right', 'center left', 'center right', 'lower 
center', 'upper center', and 'center'.

ff 'shadow': This can be either True or False, and it renders the legend with a 
shadow effect.

ff 'fancybox': This can be either True or False and renders the legend with a 
rounded box.



Working with Annotations

90

ff 'title': This renders the legend with the title passed as a parameter.

ff 'ncol': This forces the passed value to be the number of columns for the legend.

Adding a grid
When preparing graphics, we might need to have a quick guess of the coordinates of any part 
of a figure. Adding a grid to the figure is a natural way to improve the readability of a figure. In 
this recipe, we are going to see how to add a grid to a figure.

How to do it...
matplotlib's grid functionality is controlled with the pyplot.grid() function.

import numpy as np
import matplotlib.pyplot as plt

X = np.linspace(-4, 4, 1024)
Y = .25 * (X + 4.) * (X + 1.) * (X - 2.)

plt.plot(X, Y, c = 'k')
plt.grid(True, lw = 2, ls = '--', c = '.75')
plt.show()

This script will show a curve with a grid in the background. The grid is aligned to the ticks of 
the axes' legend as shown in the following graph:



Chapter 3

91

How it works...
Adding a grid is as simple as calling the pyplot.grid() function with True as the 
argument. A grid is comprised of lines and as such, pyplot.grid() accepts line style 
parameters, such as linewidth, linestyle, or color. These parameters will apply  
to the lines used to draw the grid.

Adding lines
When you have a very specific need in mind, the figures offered by matplotlib might not be 
of much help to you. All the graphics made by matplotlib consist of basic primitives. When 
demonstrating how to change the color of a boxplot, we mention that most matplotlib plotting 
functions return collections of lines and shapes. Now, we are going to demonstrate how to 
directly use a fundamental primitive: lines.

How to do it...
The following script will show a simple but aesthetic pattern made of independent lines:

import matplotlib.pyplot as plt

N = 16
for i in range(N):
  plt.gca().add_line(plt.Line2D((0, i), (N - i, 0), color = '.75'))

plt.grid(True)
plt.axis('scaled')
plt.show()



Working with Annotations

92

The preceding code gives the following output:

How it works...
In this script, we plot 16 independent lines. The pyplot.Line2D() function creates a 
new Line2D object. The mandatory parameters are the endpoints of the line. The optional 
parameters are all the parameters we have seen before for line-based figures. Thus, you can 
use linestyle, linewidth, marker, markersize, color, and so on.

The pyplot.Line2D() function creates the line, but the line will not be rendered unless you 
explicitly ask for it; this is done using pyplot.gca().add_line(). The pyplot.gca() 
function returns the object that is in charge of keeping track of what to render. Calling gca().
add_line() simply signals that we want to render a line.

The pyplot.axis('scaled') function is required to ensure that the figure uses a uniform 
scale: the same scale as the one used on the x and y axes. This to be contrasted with the 
default behavior, 'tight', where matplotlib will give a different scale to the x and y axes to 
fit the figure as tightly as possible into the display surface. This feature will be introduced in 
Chapter 4, Working with Figures.



Chapter 3

93

Adding shapes
To make your own figures out of basic primitives, lines are a good way to start, but you will 
most likely need more shapes. Rendering shapes works along the same lines as rendering 
lines. In this recipe, we will show you how to add shapes in a figure.

How to do it...
In the following script, we create and render several shapes. The comments indicate which 
part renders which shape:

import matplotlib.patches as patches
import matplotlib.pyplot as plt

# Circle
shape = patches.Circle((0, 0), radius = 1., color = '.75')
plt.gca().add_patch(shape)

# Rectangle
shape = patches.Rectangle((2.5, -.5), 2., 1., color = '.75')
plt.gca().add_patch(shape)

# Ellipse
shape = patches.Ellipse((0, -2.), 2., 1., angle = 45., color =  
  '.75')
plt.gca().add_patch(shape)

# Fancy box
shape = patches.FancyBboxPatch((2.5, -2.5), 2., 1., boxstyle =  
  'sawtooth', color = '.75')
plt.gca().add_patch(shape)

# Display all
plt.grid(True)
plt.axis('scaled')
plt.show()



Working with Annotations

94

Four different shapes are displayed in the output as shown in the following screenshot:

How it works...
No matter which shapes are displayed, the principle is the same. Internally, a shape is described 
as a path called patch in matplotlib API. Paths for several kinds of shapes are available in the 
matplotlib.patches module. Indeed, this module contains patches used for all the figures. 
As is the case for lines, creating a path won't be enough to render it; you will have to signal that 
you want to render it. This is done by pyplot.gca().add_patch().

A lot of path constructors are available. Let's review those used in the example:

ff Circle: This takes the coordinates of its center and the radius as the parameters

ff Rectangle: This takes the coordinates of its lower-left corner and its size as  
the parameters

ff Ellipse: This takes the coordinates of its center and the half-length of its two axes  
as the parameters

ff FancyBox: This is like a rectangle but takes an additional boxstyle parameter 
(either 'larrow', 'rarrow', 'round', 'round4', 'roundtooth', 'sawtooth', 
or 'square')



Chapter 3

95

There's more...
Apart from the predefined shapes, we can define arbitrary shapes using polygons.

Working with polygons
Polygons are barely more complex than paths and are defined by a list of points:

import numpy as np
import matplotlib.patches as patches
import matplotlib.pyplot as plt

theta = np.linspace(0, 2 * np.pi, 8)
points = np.vstack((np.cos(theta), np.sin(theta))).transpose()

plt.gca().add_patch(patches.Polygon(points, color = '.75'))

plt.grid(True)
plt.axis('scaled')
plt.show()

The preceding code gives the following polygon as the output:



Working with Annotations

96

The matplotlib.patches.Polygon()constructor takes a list of coordinates as the inputs, 
that is, the vertices of the polygon.

Working with path attributes
All paths have several attributes that we already explored before: linewidth, linestyle, 
edgecolor, facecolor, hatch, and so on, as follows:

import numpy as np
import matplotlib.patches as patches
import matplotlib.pyplot as plt

theta = np.linspace(0, 2 * np.pi, 6)
points = np.vstack((np.cos(theta), np.sin(theta))).transpose()

plt.gca().add_patch(plt.Circle((0, 0), radius = 1., color =  
  '.75'))
plt.gca().add_patch(plt.Polygon(points, closed=None, fill=None,  
  lw = 3., ls = 'dashed', edgecolor = 'k'))

plt.grid(True)
plt.axis('scaled')
plt.show()

The following graph is the output of the preceding code:



Chapter 3

97

Here, we use a nonfilled (fill = None) polygon with dashed edges (ls = 'dashed') to 
draw a polygon outline without having to create several line objects. Numerous effects can  
be achieved by just playing with the attributes of a path.

Controlling tick spacing
In matplotlib, ticks are small marks on both the axes of a figure. So far, we let matplotlib 
handle the position of the ticks on the axes legend. As we will see in this recipe, we can 
manually override this mechanism.

How to do it...
In this script, we will manipulate the gap between the ticks on the x axis:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker

X = np.linspace(-15, 15, 1024)
Y = np.sinc(X)

ax = plt.axes()
ax.xaxis.set_major_locator(ticker.MultipleLocator(5))
ax.xaxis.set_minor_locator(ticker.MultipleLocator(1))

plt.plot(X, Y, c = 'k')
plt.show()



Working with Annotations

98

Now, smaller ticks are seen between the usual ticks:

How it works...
We forced the horizontal ticks to appear by steps of 5 units. Moreover, we also added small 
ticks, appearing by steps of 1 unit. To do so, we perform the following steps:

1.	 We get an instance of the Axes object: the object that manages the axes of  
a figure. This is the purpose of ax = plot.axes().

2.	 For the x axis (ax.xaxis), we set a Locator instance for both the major  
and minor ticks.

There's more...
If we wish to add a grid, we can take into account the minor ticks, as follows:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker

X = np.linspace(-15, 15, 1024)
Y = np.sinc(X)



Chapter 3

99

ax = plt.axes()
ax.xaxis.set_major_locator(ticker.MultipleLocator(5))
ax.xaxis.set_minor_locator(ticker.MultipleLocator(1))

plt.grid(True, which='both')
plt.plot(X, Y)
plt.show()

The preceding code snippet gives the following output:

As shown previously, we can add a grid with pyplot.grid(). This function takes an  
optional parameter, which. It can accept three values: 'minor', 'major', and 'both'.  
It determines at which ticks the grid should be displayed.

Controlling tick labeling
Tick labels are coordinates in the figure space. Although it makes sense for a fair number of 
cases, it is not always adequate. For instance, let's imagine a bar chart that shows the median 
income of 10 countries. We would like to see the names of the countries under each bar, 
rather than the coordinates of the bars. For a time series, we would like to see dates rather 
than some abstract coordinate. matplotlib provides a comprehensive API precisely for this.  
In this recipe, we will see how to control tick labeling.



Working with Annotations

100

How to do it...
Using the standard matplotlib ticks API, setting ticks for a bar chart (or any other kind of 
graphics) is done as follows:

import numpy as np
import matplotlib.ticker as ticker
import matplotlib.pyplot as plt

name_list = ('Omar', 'Serguey', 'Max', 'Zhou', 'Abidin')
value_list = np.random.randint(0, 99, size = len(name_list))
pos_list = np.arange(len(name_list))

ax = plt.axes()
ax.xaxis.set_major_locator(ticker.FixedLocator((pos_list)))
ax.xaxis.set_major_formatter(ticker.FixedFormatter((name_list)))

plt.bar(pos_list, value_list, color = '.75', align = 'center')
plt.show()

Each bar of the bar chart has its own tick and its own legend:



Chapter 3

101

How it works...
We have seen the ticker.Locator to generate the location of ticks. A ticker. 
Formatter object instance will generate labels for the ticks. The Formatter instance  
we have used here is a FixedFormatter, which will take the labels from a list of strings.  
We then set the x axis with our Formatter instance. For this particular example, we  
also use a FixedLocator to ensure that each bar is right at the middle of one tick.

There's more...
We have barely touched the surface of the topic; there's more, much more, about ticks.

A simpler way to create bar charts with fixed labels
For the particular case of fixed labels for a bar chart, we can take the advantage of a shortcut:

import numpy as np
import matplotlib.pyplot as plt

name_list = ('Omar', 'Serguey', 'Max', 'Zhou', 'Abidin')
value_list = np.random.randint(0, 99, size = len(name_list))
pos_list = np.arange(len(name_list))

plt.bar(pos_list, value_list, color = '.75', align = 'center')
plt.xticks(pos_list, name_list)
plt.show()



Working with Annotations

102

The preceding code snippet gives the following bar chart:

Rather than using the ticker API, we use the pyplot.xticks() function to give a fix  
label to a fixed set of ticks. This function takes a list of positions and a list of names as  
the parameters. The result is the same as the previous example; it's just shorter and  
easier to remember.

Advanced label generation
What if the point of the ticker API is that we have shortcuts around it? The ticker API can  
do better than show fixed labels for each tick, as follows:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker

def make_label(value, pos):
  return '%0.1f%%' % (100. * value)

ax = plt.axes()
ax.xaxis.set_major_formatter(ticker.FuncFormatter(make_label))

X = np.linspace(0, 1, 256)



Chapter 3

103

plt.plot(X, np.exp(-10 * X), c ='k')
plt.plot(X, np.exp(-5 * X), c= 'k', ls = '--')

plt.show()

The preceding code gives the following output:

In this example, the ticks are generated by a custom function, make_label. This function 
takes the coordinates of a tick as the input and generates a string; here, a percentage. No 
matter how many ticks matplotlib decides to show, we can generate the right label for it. This 
is more flexible than giving a fixed list of strings. The only new thing here is FuncFormatter, 
a formatter that takes a function as a parameter.

This approach of delegating the actual task of generating labels to a function is called 
delegation. Our delegate is make_label. It is a beautiful programming technique. Let's say, 
we want to display dates for each tick. This can be done using the standard Python time and 
date functions:

import numpy as np
import datetime
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker



Working with Annotations

104

start_date = datetime.datetime(1998, 1, 1)

def make_label(value, pos):
  time = start_date + datetime.timedelta(days = 365 * value)
  return time.strftime('%b %y')

ax = plt.axes()
ax.xaxis.set_major_formatter(ticker.FuncFormatter(make_label))

X = np.linspace(0, 1, 256)
plt.plot(X, np.exp(-10 * X), c = 'k')
plt.plot(X, np.exp(-5 * X), c = 'k', ls = '--')

labels = ax.get_xticklabels()
plt.setp(labels, rotation = 30.)
plt.show()

The preceding code gives the following output:



Chapter 3

105

Now, each tick appears as a date formatted in a human-readable fashion. The approach is 
the same as we used previously: we use a FuncFormatter. In the label generation function, 
we convert the position of the tick to a date, thanks to the datetime standard module. Here, 
we map values in the [0, 1] range to the year 1998. The datetime module also offers a 
powerful formatting function strftime, which we use to produce the label itself.





4
Working with Figures

In this chapter, we will cover:

ff Compositing multiple figures

ff Scaling both the axes equally

ff Setting an axis range

ff Setting the aspect ratio

ff Inserting subfigures

ff Using a logarithmic scale

ff Using polar coordinates

Introduction
Designing a scientific plotting package is a daunting task—the needs to cover are extremely 
diverse. On one hand, ideally, creating any kind of figure should be possible with a minimal 
amount of coding and fiddling around. On the other, we want to be able to customize any 
aspect of a graphic. Those two goals are diametrically opposed. matplotlib offers a rare 
balance between the two goals. In this chapter, we will explore ways to modify fundamental 
aspects of the stock figures, such as changing the coordinate system used.



Working with Figures

108

Compositing multiple figures
When examining some data, we might want to see several aspects of it at once. For instance, 
with population statistics data from one country, we would like to see the male/female age 
pyramid, the wealth repartition, and the population size per year as three distinct graphics. 
matplotlib offers the possibility to composite several figures together. Since Version 1.2, the 
API for this is really convenient. In this recipe, we are going to see how to compose several 
figures together.

How to do it...
We are going to use the pyplot.subplot2grid() function as follows:

import numpy as np
from matplotlib import pyplot as plt

T = np.linspace(-np.pi, np.pi, 1024)

grid_size = (4, 2)

plt.subplot2grid(grid_size, (0, 0), rowspan = 3, colspan = 1)
plt.plot(np.sin(2 * T), np.cos(0.5 * T), c = 'k')

plt.subplot2grid(grid_size, (0, 1), rowspan = 3, colspan = 1)
plt.plot(np.cos(3 * T), np.sin(T), c = 'k')

plt.subplot2grid(grid_size, (3, 0), rowspan=1, colspan=3)

plt.plot(np.cos(5 * T), np.sin(7 * T), c= 'k')

plt.tight_layout()
plt.show()



Chapter 4

109

Three figures are drawn, dividing the graphic in three areas, as follows:

How it works...
The idea behind pyplot.subplot2grid() is to define a grid of R rows and C columns. 
Then, we can render a figure to a rectangular patch of that grid.

The pyplot.subplot2grid() function has four parameters:

ff The first parameter is the number of rows and columns of the grid, passed as a tuple. 
If we want a grid of R rows and C columns, we would pass (R, C).

ff The second parameter is a coordinate in the grid, in rows and columns, also passed 
as a tuple.

ff The optional parameter rowspan defines how many rows the figure will span.

ff The optional parameter colspan defines how many columns the figure will span.

Once pyplot.subplot2grid() is called, further calls to pyplot will define a figure  
within the specified rectangular area. To render another figure in another area, we call 
pyplot.subplot2grid() again.



Working with Figures

110

In the example script, we define a 2 x 4 grid. The two top figures span over 1 column and  
3 rows, thus filling almost one full column each. The third figure spans over 2 columns but 
only 1 row, filling the bottom row. Once all the figures are described, we then call pyplot.
tight_layout(). This command asks matplotlib to pack all the figures so that none of 
them overlap each other.

There's more...
We have seen pyplot.title() add a title to a figure. In the following example, we are  
using pyplot.title() to give a title to each subfigure:

import numpy as np
from matplotlib import pyplot as plt

def get_radius(T, params):
  m, n_1, n_2, n_3 = params
  U = (m * T) / 4

  return (np.fabs(np.cos(U)) ** n_2 + np.fabs(np.sin(U)) ** n_3) ** 
(-1. / n_1)

grid_size = (3, 4)
T = np.linspace(0, 2 * np.pi, 1024)

for i in range(grid_size[0]):
  for j in range(grid_size[1]):
    params = np.random.random_integers(1, 20, size = 4)
    R = get_radius(T, params)

    axes = plt.subplot2grid(grid_size, (i, j), rowspan=1, colspan=1)
    axes.get_xaxis().set_visible(False)
    axes.get_yaxis().set_visible(False)

    plt.plot(R * np.cos(T), R * np.sin(T), c = 'k')
    plt.title('%d, %d, %d, %d' % tuple(params), fontsize = 'small')

plt.tight_layout()
plt.show()



Chapter 4

111

The following graphic contains 12 figures, each with its own title:

The pyplot.title() function gives a title for one subfigure. If we need one title for the whole 
graphic, we should use pyplot.suptitle(), where suptitle stands for SUPerior TITLE.

An alternative way to composite figures
The subplot mechanism introduced here is fairly general; it allows us to create complex 
layouts. If we just need to have a couple of figures in one row or one column, we can use 
simpler code, as follows:

import numpy as np
from matplotlib import pyplot as plt

T = np.linspace(-np.pi, np.pi, 1024)

fig, (ax0, ax1) = plt.subplots(ncols =2)
ax0.plot(np.sin(2 * T), np.cos(0.5 * T), c = 'k')
ax1.plot(np.cos(3 * T), np.sin(T), c = 'k')

plt.show()



Working with Figures

112

With just one call to pyplot.subplots(), we created two subfigures next to each other,  
as shown in the following figure:

The pyplot.subplot() function takes two optional parameters, ncols and nrows, and 
will return a Figure object with ncols * nrows instances of Axes. The Axes instances  
are laid out in a grid of ncols columns by nrows rows. This makes grid layouts very easy  
to create.

Scaling both the axes equally
By default, matplotlib will use a different scale for both the axes of a figure. In this recipe,  
we are going to see how to use the same scale for the two axes of a figure.

How to do it...
To accomplish this, we will need to play with the pyplot API and the Axes object, as shown  
in the following code:

import numpy as np
import matplotlib.pyplot as plt



Chapter 4

113

T = np.linspace(0, 2 * np.pi, 1024)

plt.plot(2. * np.cos(T), np.sin(T), c = 'k', lw = 3.)
plt.axes().set_aspect('equal')

plt.show()

The preceding script draws an ellipse with its real aspect ratio, as follows:

How it works...
In this example, we display an ellipse where the major axis is twice the length of the minor 
axis. Indeed, the rendered ellipse follows those proportions.



Working with Figures

114

The pyplot.axes() function returns an instance of the Axes object, the object in charge  
of the axes. The Axes instance have a set_aspect method, which we set to 'equal'.  
Now, both axes use the same scale. If we did not set the same aspect, the figure would  
look different.

The preceding figure is still an ellipse, but with a deformed aspect ratio.

Setting an axis range
By default, matplotlib will find the minimum and maximum of your data on both axes and use 
this as the range to plot your data. However, it is sometimes preferable to manually set this 
range, to get a better view of the data's extrema. In this recipe, we are going to see how to  
set an axis range.

How to do it...
The pyplot API provides a function to directly set the range of one axis, as follows:

import numpy as np
import matplotlib.pyplot as plt



Chapter 4

115

X = np.linspace(-6, 6, 1024)

plt.ylim(-.5, 1.5)
plt.plot(X, np.sinc(X), c = 'k')
plt.show()

The preceding script draws a curve. In contrast with the default settings, the graphic does  
not fit the curve perfectly; we have some room at the upper part of the curve, as shown in  
the following figure:

How it works...
The pyplot.xlim() and pyplot.ylim() parameters allow us to control the range of the  
x axis and y axis respectively. These parameters are the maximum and minimum values.



Working with Figures

116

Setting the aspect ratio
When preparing figures for a journal publication or a website, one might need a figure that has 
one specific aspect ratio. In this recipe, we are going to see how to control the aspect ratio of 
a figure.

How to do it...
The pyplot API provides a simple way to set up a custom aspect ratio, as follows:

import numpy as np
import matplotlib.pyplot as plt

X = np.linspace(-6, 6, 1024)
Y1, Y2 = np.sinc(X), np.cos(X)

plt.figure(figsize=(10.24, 2.56))
plt.plot(X, Y1, c='k', lw = 3.)
plt.plot(X, Y2, c='.75', lw = 3.)

plt.show()

The aspect ratio of the following figure is much different from what we would get by default:



Chapter 4

117

How it works...
We use the pyplot.figure() function, which creates a new Figure instance. A Figure 
object represents a figure as a whole. Usually, this object is created implicitly, behind the scenes. 
However, by creating the object explicitly, we can control various aspects of a figure, including its 
aspect ratio. The figsize parameter allows us to specify its size. In this example, we set the 
horizontal size as four times the vertical size, giving it a 4:1 aspect ratio.

Inserting subfigures
Inserting a small, embedded figure can be helpful in showing a detail of a figure, or more 
generally, to emphasize a particular part of a graphic. In this recipe, we are going to see how 
to insert a subfigure into a figure.

How to do it...
matplotlib allows us to create subregions in any part of a figure, and assign a figure to that 
subregion. In the following example, a subregion is created to show a detail of the curve:

import numpy as np
from matplotlib import pyplot as plt

X = np.linspace(-6, 6, 1024)
Y = np.sinc(X)

X_detail = np.linspace(-3, 3, 1024)
Y_detail = np.sinc(X_detail)

plt.plot(X, Y, c = 'k')

sub_axes = plt.axes([.6, .6, .25, .25])
sub_axes.plot(X_detail, Y_detail, c = 'k')
plt.setp(sub_axes)

plt.show()



Working with Figures

118

The subregion is shown on the upper-right part of the figure.

How it works...
We start by creating a subregion on the figure as follows:

sub_axes = plt.axes([.6, .6, .25, .25])

The region is in figure-wise coordinates; that is, (0, 0) is the bottom-left corner and (1, 1) is the 
top-right corner of the overall figure. The subregion is defined by four values: the coordinates 
of the bottom-left corner of the region and its dimensions.

Once the subregion is defined, we have an Axes instance in which we create a figure.  
Then, we need to call pyplot.setp() on our Axes instance as follows:

plt.setp(sub_axes)

Note that there is no limit on how many subregions you can create.

Using a logarithmic scale
When visualizing data that varies across a very wide range, a logarithmic scale allows us  
to visualize variations that would otherwise be barely visible. In this recipe, we are going to  
show you how to manipulate the scaling system of a figure.



Chapter 4

119

How to do it...
There are several ways to set up a logarithmic scale. The way it is done here works for any 
kind of figure and not only curve plots. In the following example, we set up a logarithmic  
scale that will apply to all plot elements:

import numpy as np
import matplotlib.pyplot as plt

X = np.linspace(1, 10, 1024)

plt.yscale('log')
plt.plot(X, X, c = 'k', lw = 2., label = r'$f(x)=x$')
plt.plot(X, 10 ** X, c = '.75', ls = '--', lw = 2., label = 
r'$f(x)=e^x$')
plt.plot(X, np.log(X), c = '.75', lw = 2., label = r'$f(x)=\log(x)$')

plt.legend()
plt.show()

Several curves are shown in the following figure, with the vertical axis using a logarithmic scale:



Working with Figures

120

How it works...
In this example, we display three functions, with the y axis following a logarithmic scale.  
All the work is done by pyplot.yscale(), where we pass 'log' to specify the type of  
scale we wish to have. Likewise, we would use plot.xscale() to achieve the same  
result on the x axis. A log-log plot can be created quite simply, as follows:

plt.xscale('log')
plt.yscale('log')

The logarithm base is 10 by default, but it can be changed with the optional parameters 
basex and basey.

There's more...
Using a logarithmic scale can also be useful to zoom in on one small range over data with  
a very large range, as demonstrated in the following example:

import numpy as np
import matplotlib.pyplot as plt

X = np.linspace(-100, 100, 4096)

plt.xscale('symlog', linthreshx=6.)
plt.plot(X, np.sinc(X), c = 'k')

plt.show()

The central part of the curve (the [-6, 6] range) is shown with a linear scale, while the  
other parts are shown with a logarithmic scale in the following figure:



Chapter 4

121

Here, we pass 'symlog' as a parameter for pyplot.xscale(), a symmetric logarithmic 
scale centered on 0. By setting 'linthreshx=6.', we specify that in the [-6, 6] range, we 
want a linear and logarithmic scale outside that range. This way, we have a detailed view on 
one range, while still having a view on a large range of the remaining data.

Using polar coordinates
Some phenomenon are of an angular nature. An example would be the power of a loudspeaker 
depending on the angle we measure it from. Polar coordinates are a natural choice to represent 
such data. Also, cyclic data such as annual or daily statistics can be conveniently plotted in polar 
coordinates. In this recipe, we are going to see how to work with polar coordinates.

How to do it...
Let's render a simple polar curve as follows:

import numpy as np
import matplotlib.pyplot as plt

T = np.linspace(0 , 2 * np.pi, 1024)



Working with Figures

122

plt.axes(polar = True)
plt.plot(T, 1. + .25 * np.sin(16 * T), c= 'k')

plt.show()

The following figure shows a specialized layout for polar plots:

How it works...
As we have seen before, pyplot.axes() explicitly creates an Axes instance, which allows 
some custom settings. Simply using the optional polar parameter will set up a polar projection. 
Note how the legend adapts to the projection.

There's more...
Plotting curves is maybe the most common usage for polar projections. However, we can use 
any other kinds of plots, such as bar charts, and display shapes. For instance, using polar 
projections and polygons, you can make a radar plot. Use the following code to do so:

import numpy as np
import matplotlib.patches as patches
import matplotlib.pyplot as plt



Chapter 4

123

ax = plt.axes(polar = True)

theta = np.linspace(0, 2 * np.pi, 8, endpoint = False)
radius = .25 + .75 * np.random.random(size = len(theta))
points = np.vstack((theta, radius)).transpose()

plt.gca().add_patch(patches.Polygon(points, color = '.75'))
plt.show()

The following figure shows the polygon we have defined with polar coordinates:

Note that the coordinates for the polygon are angles and distances to the origin. We do not 
need to perform explicit conversions from polar to Cartesian coordinates.





5
Working with a  

File Output

In this chapter, we will cover:

ff Generating a PNG picture file

ff Handling transparency

ff Controlling the output resolution

ff Generating PDF or SVG documents

ff Handling multiple-page PDF documents

Introduction
Like other kinds of technical figures, scientific figures are rarely standalone documents—they are 
meant to be part of a document. matplotlib can render any figure to various common file formats 
such as PNG, EPS, SVG, and PDF. By default, a figure is shown with a minimalistic user interface, 
which allows you to save a figure to a file. However, this approach is not convenient if you have to 
generate a large batch of figures. Also, you might want to be able to generate a new figure every 
time some data is updated. In this chapter, we explore the file output capabilities of matplotlib. 
Apart from programmatically generating the file output, we are going to learn how to control 
important factors such as the resolution and size of the output, and dealing with transparency.



Working with a File Output

126

Generating a PNG picture file
By default, matplotlib shows a figure in a window with a rudimentary user interface. This 
interface allows you to save the figure to a file. Although it is a reasonable approach for 
prototyping, it is not convenient in several common usage cases. For instance, you might  
want to generate a dozen pictures to be included on an automatically generated report.  
You might want to generate one picture per input file as a batch processor. matplotlib  
allows you to directly save the figure to a picture file with great flexibility.

To get started, we are going to see how to output a figure to a PNG file. A PNG file is ideal for 
a bitmap output, and it is also the de-facto standard for bitmap pictures. It's a well-supported 
standard; it relies on a lossless compression algorithm (thus avoiding unsightly compression 
artifacts), and handles transparency.

How to do it...
We are going to use the pyplot.savefig() call instead of the usual pyplot.show() call 
when asking matplotlib to render the figure as follows:

import numpy as np
from matplotlib import pyplot as plt

X = np.linspace(-10, 10, 1024)
Y = np.sinc(X)

plt.plot(X, Y)
plt.savefig('sinc.png', c = 'k')

This script, rather than showing a figure in a window with a user interface, will simply create a 
file named sinc.png. Its resolution will be 800 x 600 pixels, in 8-bit colors (24-bits per pixel). 
This file is a representation of the following graph:



Chapter 5

127

How it works...
The function pyplot.savefig() works exactly like pyplot.show()—it interprets all the 
commands issued to pyplot and produces a figure. The only difference is what is done at  
the end of the processing. The pyplot.show() function sends the picture data to whatever 
user interface library it can use, while the pyplot.savefig() function writes that data to  
a file. Thus, all the commands work exactly the same way, no matter what the nature of the 
final output is.

The pyplot.savefig() function offers a variety of optional parameters, which we will 
explore in the following sections.

Handling transparency
When creating figures, they are rarely meant to be used as alone. For instance, figures can  
be part of a website or a presentation. In such cases, the figures will have to be integrated 
with other graphics. Transparency is important for such integration—figures will blend in an 
aesthetically pleasing and consistent manner with their background. In this recipe, we are 
going to see how to output figures with transparency.



Working with a File Output

128

How to do it...
To demonstrate transparency, we are going to create a figure and embed it in a webpage.  
The figure is going to blend with the webpage background. All the files that are created in  
this recipe should be in the same directory. We are going to do the following in this section:

ff Render a figure to a PNG file, with a transparent background

ff Make a HTML page that includes a figure

Rendering a figure to a PNG file with a transparent background
To render a figure to a PNG file, we will again use pyplot.savefig(). However, the optional 
parameter transparent is set to True as shown in the following script:

import numpy as np
import matplotlib.pyplot as plt

X = np.linspace(-10, 10, 1024)
Y = np.sinc(X)

plt.plot(X, Y, c = 'k')
plt.savefig('sinc.png', transparent = True)

Making a HTML page that includes the figure
Let's use the PNG file on a webpage with a background. A minimal HTML code to show  
sinc.png with a background.png picture tiled in the background is shown as follows :

<html>
  <head>
    <style>
      body {
        background: white url(background.png);
      }
    </style>
  </head>
  <body>
    <img src='sinc.png' width='800 height='600'></img>
  </body>
</html>

When viewing the webpage with a browser, the figure blends in with the tiled background as 
shown in the following graph. The same thing would happen in other contexts, such as when 
using the figure in a presentation.



Chapter 5

129

How it works...
By default, pyplot.savefig() will not include transparency information in the output.  
For instance, when we output PNG pictures, the PNG file will use 24-bits per pixels by default, 
storing only the red, green, and blue components of a pixel on 8-bits. However, when enabling 
the transparent output, pyplot.savefig() will use 32-bits per pixel—an additional 
channel, the alpha channel, stores the transparency information.

There's more...
So far, the only transparency information that concerns the background of the figure is that the 
elements of the figure are either background (fully transparent) or foreground (fully opaque). 
However, we can control the level of transparency of any graphics generated with matplotlib.

matplotlib allows you to define the level of transparency of a figure as an optional parameter, 
alpha. If alpha is equal to 1, the figure will be completely opaque, which is the default 
setting. If alpha is equal to 0, the figure will be completely invisible. An intermediary value 
of alpha will give partial transparency. The optional parameter alpha is available for most 
figure-drawing functions.



Working with a File Output

130

The following script demonstrates this:

import numpy as np
import matplotlib.pyplot as plt

name_list = ('Omar', 'Serguey', 'Max', 'Zhou', 'Abidin')
value_list = np.random.randint(99, size=len(name_list))
pos_list = np.arange(len(name_list))

plt.bar(pos_list, value_list, alpha = .75, color = '.75', align =  
  'center')
plt.xticks(pos_list, name_list)

plt.savefig('bar.png', transparent = True)

The preceding script will create a bar graph and save the figure to a PNG file. When using this 
PNG file in a web page, we can see that not only does the background of the figure blend in, 
but the content of the figure also blends in, as shown in the following screenshot:



Chapter 5

131

Controlling the output resolution
By default, when using the output to a bitmap picture, matplotlib chooses the size and the 
resolution of the output for us. Depending on what the bitmap picture will be used for, we might 
want to choose the resolution ourselves. For instance, if a picture is to be part of a large poster, 
we might prefer a high resolution, or, if we want to generate a thumbnail, then the resolution 
would be very low. In this recipe, we will learn how to control the output resolution.

How to do it...
The pyplot.savefig() function provides an optional parameter to control the output 
resolution, as shown in the following script:

import numpy as np
from matplotlib import pyplot as plt

X = np.linspace(-10, 10, 1024)
Y = np.sinc(X)

plt.plot(X, Y)
plt.savefig('sinc.png', dpi = 300)

The preceding script draws a curve and outputs the result to a file. Instead of the usual  
800 x 600 pixels output, it will be 2400 x 1800 pixels.

How it works...
The pyplot.savefig() function has an optional parameter called dpi. This parameter 
controls the resolution of the picture expressed in DPI (Dots Per Inches). For those more 
familiar with metric units, 1 inch equals 2.54 centimeters. This unit expresses how many  
dots are found in 1 inch of the actual document. A good inkjet printer will print a document 
with a resolution of 300 dpi. A high quality laser printer can easily print at 600 dpi.

By default, matplotlib will output a figure of 8 x 6 spatial units—a 4/3 aspect ratio.  
In matplotlib, 1 spatial unit equals to 100 pixels. Thus, by default, matplotlib will give  
a picture file of 800 x 600 pixels. If we use dpi = 300, the picture size will be 8 * 300  
x 6 * 300, that is, 2400 x 1800 pixels.



Working with a File Output

132

There's more...
In Chapter 4, Working with Figures, we saw how to control the aspect ratio. If we combine the 
aspect ratio and DPI, we have full control on the general proportions of a picture. Let's say we 
want to display a hexagon in a 512 x 512 pixels picture. We would do this as follows:

import numpy as np
import matplotlib.pyplot as plt

theta = np.linspace(0, 2 * np.pi, 8)
points = np.vstack((np.cos(theta), np.sin(theta))).transpose()

plt.figure(figsize=(4., 4.))
plt.gca().add_patch(plt.Polygon(points, color = '.75'))

plt.grid(True)
plt.axis('scaled')

plt.savefig('polygon.png', dpi = 128)

The result of the preceding script would be the following graph:

We display the figure on a 4 x 4 unit area, and output this at 128 dpi—the output will be  
512 x 512 pixels. We can also display 512 pixels with a 8 x 8 unit area and output it at  
64 dpi. This will give us the following result:



Chapter 5

133

The annotations are smaller and the grid has thinner lines. The annotations and the thickness 
of the lines have their own default values expressed in spatial units. Thus, dividing the output 
resolution by two will make the annotations two times smaller. If you start manipulating the 
spatial resolution and each individual element size, it can become confusing very quickly. As 
a rule, it would be better for you to change the size of individual elements (annotations and 
thickness) only relative to each other. If you want to make all annotations appear uniformly 
larger, then you may play with the resolution settings.

Generating PDF or SVG documents
An output to a bitmap picture is not always ideal. Bitmap pictures represent pictures as an 
array of pixels at one given scale. Zoom in and you will get some well-known artifacts (jaggies, 
staircases, blur, and so on), depending on the sampling algorithm employed. Vector pictures 
are scale invariant; no matter at which scale you observe them, no loss of details or artifacts 
will show up. As such, vector pictures are desirable when composing a larger document, such 
as a journal article. We do not need to generate new pictures when adjusting the scale of a 
figure. matplotlib can output vector pictures such as PDF and SVG pictures.



Working with a File Output

134

How to do it...
The output to a PDF document is a simple affair, as shown in the following script:

import numpy as np
from matplotlib import pyplot as plt

X = np.linspace(-10, 10, 1024)
Y = np.sinc(X)

plt.plot(X, Y)
plt.savefig('sinc.pdf')

The preceding script will draw a figure and save it to a file named sinc.pdf.

How it works...
We have already discussed the pyplot.savefig() function, which renders a figure to a file. 
The filename is enough to specify whether the file should be PNG, PDF, or SVG. matplotlib will 
look at the file extension of the filename and deduce the type of file.

There's more...
In some cases, you might want to save a file under a given format, say SVG, but you do not 
want the name to have the .svg extension. The pyplot.savefig parameter, as an optional 
parameter, allows you to do that. Setting format = 'svg', pyplot.savefig will not 
deduce the output file type from the file name passed to the function, it will use the name 
passed to the format instead.

Handling multiple-page PDF documents
In Chapter 4, Working with Figures, saw seen how to compose several figures in one matplotlib 
graph. This allows you to create very elaborate plots. When using the PDF output, we have to 
keep in mind that the graph has to fit on one page. However, with some additional work, we can 
output PDF documents of several pages. Be warned, matplotlib is a scientific plotting package, 
not a document composition system, such as LaTeX or ReportLab. Thus, support for multiple 
pages is fairly minimal. In this recipe, we will see how to generate multiple page PDF documents.



Chapter 5

135

How to do it...
To demonstrate multiple page PDF outputs with matplotlib, let's generate 15 bar charts, 
with five charts per page. The following script will output a three-page document named 
barcharts.pdf:

import numpy as np
from matplotlib import pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages

# Generate the data
data = np.random.randn(15, 1024)

# The PDF document
pdf_pages = PdfPages('barcharts.pdf')

# Generate the pages
plots_count = data.shape[0]
plots_per_page = 5
pages_count = int(np.ceil(plots_count / float(plots_per_page)))
grid_size = (plots_per_page, 1)

for i, samples in enumerate(data):
  # Create a figure instance (ie. a new page) if needed
  if i % plots_per_page == 0:
    fig = plt.figure(figsize=(8.27, 11.69), dpi=100)

  # Plot one bar chart
  plt.subplot2grid(grid_size, (i % plots_per_page, 0))
  plt.hist(samples, 32, normed=1, facecolor='.5', alpha=0.75)

  # Close the page if needed
  if (i + 1) % plots_per_page == 0 or (i + 1) == plots_count:
    plt.tight_layout()
    pdf_pages.savefig(fig)

# Write the PDF document to the disk
pdf_pages.close()



Working with a File Output

136

The bar charts are neatly laid out on the three pages, as shown in the following screenshot:

How it works...
Usually, a script using matplotlib does not depend on the type of the output. We always use 
pyplot.savefig() for all kinds of output. Here, however, we have to play with the specifics 
of the PDF output. Thus, this script does the following operations:

ff Imports the matplotlib package that handles the PDF output, matplotlib.
backends.backend_pdf. From this package, we just need the PdfPages  
object. This object represents a PDF document.

ff Creates an instance of the PDF document, named pdf_pages. This is done by  
using the pdf_pages = PdfPages('histograms.pdf') function.

ff To generate each page, it does the following:

�� Creates a new figure instance, with the dimensions of an A4 page. This is 
done by using the fig = plot.figure(figsize=(8.27, 11.69), 
dpi=100) function.

�� Populates the figure with plots. In this example, we use subplots to lay 
several plots in one figure.

�� Creates a new page in our PDF document, which will contain our figure.  
This is done by using the pdf_pages.savefig(fig) function.

ff Once we have generated all the figures we want, we can output the document by 
using the pdf_pages.close() function.



Chapter 5

137

Note that page is used here as a fairly general term. A page does not have to be of a specific 
size. Different pages can have different sizes. The script is written so that the number of 
pages is automatically computed from the total number of figures and the number of figures 
per page.

There's more...
Because matplotlib is not a full-fledged document-composition system, things like page numbers 
or page headers are not easily achieved without awful tricks. If you really need such features, 
you would be wise to generate each figure as a single PDF document. Then, those figures would 
be used by a document-composition system to automatically generate a PDF document. For 
instance, DocBook is a system that takes XML descriptions to generate documents in PDF or 
other common formats. This is, of course, a whole different scale of effort.





6
Working with Maps

In this chapter, we will cover the following topics:

ff Visualizing the content of a 2D array

ff Adding a colormap legend to a figure

ff Visualizing nonuniform 2D data

ff Visualizing a 2D scalar field

ff Visualizing contour lines

ff Visualizing a 2D vector field

ff Visualizing the streamlines of a 2D vector field

Introduction
Up until now, we have covered plotting primitives for data of essentially unidimensional 
characters. By drawing a map of some kind, you can visualize the influence that two 
variables have on the third one. Imagine you have weather stations scattered over a country. 
A map visualization would show at a glance how rainfall and winds are distributed over the 
country. matplotlib offers powerful primitives driven by a simple API to create maps.



Working with Maps

140

Visualizing the content of a 2D array
Let's start with the most basic scenario. We have a 2D array, and we want to visualize its 
content. As an example, we will visualize the Mandelbrot set. The Mandelbrot set, a famous 
fractal shape, associates a number of iterations to each point on the plane.

How to do it...
We will first fill a 2D square array with values and then call pyplot.imshow() to visualize it, 
as shown in the following code:

import numpy as np
import matplotlib.cm as cm
from matplotlib import pyplot as plt 

def iter_count(C, max_iter): 
  X = C 
  for n in range(max_iter): 
    if abs(X) > 2.: 
      return n 
    X = X ** 2 + C 
  return max_iter 

N = 512 
max_iter = 64 
xmin, xmax, ymin, ymax = -2.2, .8, -1.5, 1.5 
X = np.linspace(xmin, xmax, N) 
Y = np.linspace(ymin, ymax, N) 
Z = np.empty((N, N)) 

for i, y in enumerate(Y): 
  for j, x in enumerate(X): 
    Z[i, j] = iter_count(complex(x, y), max_iter)

plt.imshow(Z, cmap = cm.gray)
plt.show()

This script might take a few seconds to a few minutes to produce the output, depending on 
your computer. Reducing N, the size of the square array we are filling, will reduce the amount 
of computations. The result will be a view of the Mandelbrot set in all of its fractal glory:



Chapter 6

141

Note that the coordinates shown on the axes are the 2D array indexes.

How it works...
The pyplot.imshow() function is very simple; give it a 2D array and it will render a picture 
where each pixel represents one value taken from the 2D array. The color of the pixel is picked 
from a colormap—each value of the array is linearly normalized in the [0, 1] interval. The 
pyplot.imshow() function renders a figure, but it won't show it. As usual, we should call 
pyplot.show() to see the figure. However, having two functions with such similar names  
is arguably confusing.

The remaining parts of the script generate our example data. The 2D array Z is created  
and then filled with a double loop. This loop samples the [-2.2, 0.8]*[-1.5, 1.5] 
square. For each sample, the iter_count function computes the Mandelbrot set iterations. 
The data in the Z array could have come from a file or any other source.



Working with Maps

142

There's more…
The result we got from pyplot.imshow() is a bit raw. The coordinates shown on the 
axes are the 2D array indexes. We might prefer different coordinates; in this case, the 
coordinates of the square we sampled. The colormap used here is less than ideal. This  
can be addressed using the optional parameters of pyplot.imshow(). Let's change  
the call to pyplot.imshow():

plt.imshow(Z, cmap = cm.binary, extent=(xmin, xmax, ymin, ymax))

Since we use a colormap, we should import the colormap module of matplotlib. At the 
beginning of the script, add the following line:

import matplotlib.cm as cm

While the data is strictly the same, the output will change:

The extent optional parameter specifies the coordinate system for the data stored in the 2D 
array. The coordinate system is a tuple of four values; the minimum and maximum extent on the 
horizontal axis and then the vertical axis. Now, the axes show the coordinates of the square we 
sample to compute the Mandelbrot set. The parameter cmap specifies the colormap.



Chapter 6

143

Now, let's reduce the size of our sample data from 512 to 32 in our script. The output will look 
like the following screenshot:

We use 32*32 samples rather than 512*512 samples to represent the Mandelbrot set. But 
the resulting figure is not smaller. Actually, pyplot.imshow() does more than coloring pixels 
to represent a 2D array. The pyplot.imshow() function will produce a picture of a given 
arbitrary size and perform an interpolation if the input data is smaller or bigger than the figure. 
In this example, we can see that the default interpolation is linear. This is not always ideal. The 
pyplot.imshow() function has an optional parameter, interpolation, that allows us to 
specify what kind of interpolation to use. matplotlib offers an impressive list of interpolation 
schemes. Let's look at the simplest interpolation scheme, nearest neighbor interpolation:

plt.imshow(Z, cmap = cm.binary, interpolation = 'nearest',  
  extent=(xmin, xmax, ymin, ymax))



Working with Maps

144

The raw data is now much more evident:

We might want to use an interpolation scheme that is more sophisticated than the punny 
linear interpolation. The latter is cheap to compute but produces unsightly artifacts. Let's  
use a bicubic interpolation, using interpolation = 'bicubic'. We will get a much  
better result:



Chapter 6

145

matplotlib has more sophisticated interpolation schemes 
such as sinc and lanzcos.

Adding a colormap legend to a figure
A colormap is a key ingredient to produce both readable and visually pleasing figures. However, 
we are doing science here, and esthetic is just a side objective. When using colormaps, we 
would like to know which value corresponds to a given color. In this recipe, we will look at a 
simple way to add such information to a figure.

How to do it...
We will use the same example, the Mandelbrot set. We simply add a call to  
pyplot.colorbar():

import numpy as np
from matplotlib import pyplot as plt 
import matplotlib.cm as cm 

def iter_count(C, max_iter): 
  X = C 
  for n in range(max_iter): 
    if abs(X) > 2.: 
      return n 
    X = X ** 2 + C 
  return max_iter 

N = 512 
max_iter = 64 
xmin, xmax, ymin, ymax = -2.2, .8, -1.5, 1.5 
X = np.linspace(xmin, xmax, N) 
Y = np.linspace(ymin, ymax, N) 
Z = np.empty((N, N)) 

for i, y in enumerate(Y): 
  for j, x in enumerate(X): 
    Z[i, j] = iter_count(complex(x, y), max_iter) 

plt.imshow(Z, 
            cmap = cm.binary, 
            interpolation = 'bicubic', 
            extent=(xmin, xmax, ymin, ymax)) 



Working with Maps

146

cb = plt.colorbar(orientation='horizontal', shrink=.75) 
cb.set_label('iteration count') 

plt.show()

The preceding code will produce the following output:

A neat color bar allows you to associate the colors from the colormap to the value of interest. 
Here, it is the Mandelbrot iteration count.

How it works...
Most of the script is strictly identical to the script introduced in the previous recipe.  
The relevant bit of the script is the following:

cb = plt.colorbar(orientation='horizontal', shrink=.75) 
cb.set_label('iteration count')



Chapter 6

147

The pyplot.colorbar() function signals matplotlib that we want a colorbar to be shown. 
For demonstration purposes, we use some optional parameters here. The orientation 
parameter is to choose whether the colorbar should be vertical or horizontal. It is vertical by 
default. The shrink parameter is to shrink the colorbar from its default size. A colorbar will 
not have a legend by default. A legend can be set, but it is a bit awkward to do so. The call  
to the pyplot.colorbar() function produces a Colorbar instance. We then call the  
set_label() method of that Colorbar instance.

Visualizing nonuniform 2D data
So far, we have assumed that we have uniformly sampled 2D data; our data is sampled with 
a grid pattern. However, nonuniformly sampled data is very common. For instance, we might 
want to visualize measurements from weather stations. Weather stations are built wherever 
it is possible; they are laid out into a perfect grid. When sampling functions, we might use a 
sophisticated sampling process (adaptive sampling, quasi-random sampling, and so on) which 
does not produce grid layouts. Here, we show a simple way to deal with such 2D data.

How to do it...
The script draws the Mandelbrot set sampled from the same square as in the previous recipes. 
However, instead of using a regular grid sampling, we randomly sample the Mandelbrot set, as 
shown in the following example:

import numpy as np
from numpy.random import uniform, seed 

from matplotlib import pyplot as plt 
from matplotlib.mlab import griddata 
import matplotlib.cm as cm 

def iter_count(C, max_iter): 
  X = C 
  for n in range(max_iter): 
    if abs(X) > 2.: 
      return n 
    X = X ** 2 + C 
  return max_iter 

max_iter = 64 
xmin, xmax, ymin, ymax = -2.2, .8, -1.5, 1.5 

sample_count = 2 ** 12 
A = uniform(xmin, xmax, sample_count) 
B = uniform(ymin, ymax, sample_count) 
C = [iter_count(complex(a, b), max_iter) for a, b in zip(A, B)] 



Working with Maps

148

N = 512 
X = np.linspace(xmin, xmax, N) 
Y = np.linspace(ymin, ymax, N) 
Z = griddata(A, B, C, X, Y, interp = 'linear') 

plt.scatter(A, B, color = (0., 0., 0., .5), s = .5) 
plt.imshow(Z, 
            cmap = cm.binary, 
            interpolation = 'bicubic', 
            extent=(xmin, xmax, ymin, ymax)) 
plt.show()

This script will show the randomly sampled Mandelbrot set. The sample points are shown as 
tiny black dots:

Obviously, due to the random sampling process, the result is more chaotic than what we  
get from a regular sampling. However, we used only 4,096 samples instead of the 262,144 
samples used in the previous examples, so the result we got is honorable. With the nonuniform 
sampling capabilities of matplotlib, using an adaptive sampling approach would allow you to get 
a high resolution view of the Mandelbrot set at a much lower computational cost than a regular 
grid sampling.



Chapter 6

149

How it works...
First, the script randomly samples the Mandelbrot set, which is done by the following part of 
the script:

sample_count = 2 ** 12 
A = uniform(xmin, xmax, sample_count) 
B = uniform(ymin, ymax, sample_count) 
C = [iter_count(complex(a, b), max_iter) for a, b in zip(A, B)]

The arrays A and B hold the coordinates of the samples, while the list C contains the value  
for each of these samples.

Then, the script will produce a 2D array of data from the nonuniform samples, which is 
accomplished by the following part:

N = 512 
X = np.linspace(xmin, xmax, N) 
Y = np.linspace(ymin, ymax, N) 
Z = griddata(A, B, C, X, Y, interp = 'linear') 

The arrays X and Y define a regular grid. The array Z is a 2D array built by interpolating 
the nonuniform samples. This interpolation is done by the griddata() function from the 
matplotlib.mlab package. Since we now have a 2D array, we can use the pyplot.
imshow() function to visualize it. An additional call to pyplot.scatter() is used to  
show the original sample points.

For demonstration purposes, we use a linear interpolation for pyplot.griddata(), with  
the optional parameter interp. By default, this parameter is set to 'nn', which stands  
for natural neighbor interpolation. The latter scheme is preferable in most cases as it is  
very robust.

Visualizing a 2D scalar field
matplotlib and NumPy offer some interesting mechanisms that make the visualization of a 2D 
scalar field convenient. In this recipe, we show a very simple way to visualize a 2D scalar field.

How to do it...
The numpy.meshgrid() function generates the samples from an explicit 2D function. Then, 
pyplot.pcolormesh() is used to display the function, as shown in the following code:

import numpy as np
from matplotlib import pyplot as plt 
import matplotlib.cm as cm 



Working with Maps

150

n = 256 
x = np.linspace(-3., 3., n) 
y = np.linspace(-3., 3., n) 
X, Y = np.meshgrid(x, y) 

Z = X * np.sinc(X ** 2 + Y ** 2) 

plt.pcolormesh(X, Y, Z, cmap = cm.gray) 
plt.show()

The preceding script will produce the following output:

Note how a sensible choice of colormap can be helpful; here, negative values appear in black 
and positive values appear in white. Thus, we have the sign and magnitude information visible 
at a glance. Use a colormap going from red to blue with white at the middle of the scale, which 
does an even better job.



Chapter 6

151

How it works...
The numpy.meshgrid() function takes two coordinates, x and y, and builds two grids of  
the coordinates X and Y. Because X and Y are NumPy 2D arrays, we can manipulate them  
as we would for a single variable. We do not have to write a loop to generate the matrix Z.  
This makes computing the scalar field concise and easy to read:

Z = X * numpy.sinc(X ** 2 + Y ** 2) 

Then, the function pyplot.pcolormesh() is called to render the samples. We could have 
the same result from pyplot.imshow(). However, we just need to pass X, Y, and Z here to 
get the coordinate system right, rather than play with an optional parameter. Doing so makes 
the script easier to read. Also, for a large amount of data, pyplot.pcolormesh() is likely  
to be much faster.

Visualizing contour lines
So far, we have visualized data by coloring each data point and have thrown in some 
interpolation on top. matplotlib is able to provide more sophisticated representations  
for 2D data. Contour lines link all points with the same value, helping you to capture  
features that might not be easily seen otherwise. In this recipe, we will see how to  
display such contour lines.

How to do it...
The function pyplot.contour() allows you to generate contour annotations.  
To demonstrate this, let's reuse our code from the previous recipes in order to study  
a zoomed-in part of the Mandelbrot set:

import numpy as np
from matplotlib import pyplot as plt 
import matplotlib.cm as cm 

def iter_count(C, max_iter): 
  X = C 
  for n in range(max_iter): 
    if abs(X) > 2.: 
      return n 
    X = X ** 2 + C 
  return max_iter 

N = 512 
max_iter = 64 



Working with Maps

152

xmin, xmax, ymin, ymax = -0.32, -0.22, 0.8, 0.9 
X = np.linspace(xmin, xmax, N) 
Y = np.linspace(ymin, ymax, N) 
Z = np.empty((N, N)) 

for i, y in enumerate(Y): 
  for j, x in enumerate(X): 
    Z[i, j] = iter_count(complex(x, y), max_iter) 

plt.imshow(Z, 
            cmap = cm.binary, 
            interpolation = 'bicubic', 
            origin = 'lower', 
            extent=(xmin, xmax, ymin, ymax)) 

levels = [8, 12, 16, 20] 
ct = plt.contour(X, Y, Z, levels, cmap = cm.gray) 
plt.clabel(ct, fmt='%d') 

plt.show()

The preceding script will show a detail of the Mandelbrot set with sophisticated  
contour annotations:



Chapter 6

153

How it works...
We recognize the code used in the previous recipes demonstrated with the Mandelbrot set. 
The only difference here is that we zoom inside a particular detail of the Mandelbrot set by 
changing the value of xmin, xmax, ymin, and ymax. We use pyplot.imshow() to render 
the iteration count of each sample, as we did before.

Only one addition has been made: the call to pyplot.contour(). This function takes the 
coordinates X and Y of the sample grid and the samples stored in the matrix Z. The function 
will then render contours corresponding to the values specified in the levels list. The level 
can be colored with a colormap using the optional parameter cmap. We could have used the 
optional parameter color to specify one unique color for all the contours.

The level of each contour can be shown either with a colorbar or directly on the figure. The 
pyplot.contour() function returns a Contour instance. The pyplot.clabel() function 
takes the Contour instance and an optional format string to render a label per contour.

There's more...
Here, the contours are shown simply as lines. However, we can show filled contours.  
Let's demonstrate this on the same detail of the Mandelbrot set we used before:

import numpy as np
from matplotlib import pyplot as plt 
import matplotlib.cm as cm 

def iter_count(C, max_iter): 
  X = C 
  for n in range(max_iter): 
    if abs(X) > 2.: 
      return n 
    X = X ** 2 + C 
  return max_iter 

N = 512 
max_iter = 64 
xmin, xmax, ymin, ymax = -0.32, -0.22, 0.8, 0.9 
X = np.linspace(xmin, xmax, N) 
Y = np.linspace(ymin, ymax, N) 
Z = np.empty((N, N)) 

for i, y in enumerate(Y): 
  for j, x in enumerate(X): 
    Z[i, j] = iter_count(complex(x, y), max_iter) 



Working with Maps

154

levels = [0, 8, 12, 16, 20, 24, 32] 
plt.contourf(X, Y, Z, levels, cmap = cm.gray, antialiased = True) 
plt.show()

The preceding script will produce the following output:

Here, we simply replaced pyplot.contour() with pyplot.contourf() and used  
additional levels for the contours. By default, filled contours are not antialiased. We used  
the antialiased optional parameter to get a more eye-pleasing result.

Visualizing a 2D vector field
So far, we have been working with 2D scalar fields: functions that associate a value to each 
point of the 2D plane. Vector fields associate a 2D vector to each point of the 2D plane.  
Vector fields are common in Physics as they provide solutions to differential equations. 
matplotlib provides functions to visualize vector fields.



Chapter 6

155

Getting ready
For this example, we will need the SymPy package; a package for symbolic computations.  
This package has been used only to keep the example short and is not required for working 
with vector fields.

How to do it...
To illustrate the visualization of vector fields, let's visualize the velocity flow of an incompressible 
fluid around a cylinder. We do not need to bother about how to compute such a vector field 
but only about how to show it. The pyplot.quiver() function is what we need; refer to the 
following code:

import numpy as np
import sympy 
from sympy.abc import x, y 
from matplotlib import pyplot as plt 
import matplotlib.patches as patches 

def cylinder_stream_function(U = 1, R = 1): 
  r = sympy.sqrt(x ** 2 + y ** 2) 
  theta = sympy.atan2(y, x) 
  return U * (r - R ** 2 / r) * sympy.sin(theta) 

def velocity_field(psi): 
  u = sympy.lambdify((x, y), psi.diff(y), 'numpy') 
  v = sympy.lambdify((x, y), -psi.diff(x), 'numpy') 
  return u, v 

U_func, V_func = velocity_field(cylinder_stream_function() ) 
 
xmin, xmax, ymin, ymax = -2.5, 2.5, -2.5, 2.5 
Y, X = np.ogrid[ymin:ymax:16j, xmin:xmax:16j] 
U, V = U_func(X, Y), V_func(X, Y) 

M = (X ** 2 + Y ** 2) < 1. 
U = np.ma.masked_array(U, mask = M) 
V = np.ma.masked_array(V, mask = M) 

shape = patches.Circle((0, 0), radius = 1., lw = 2., fc = 'w', ec  
  = 'k', zorder = 0) 
plt.gca().add_patch(shape) 

plt.quiver(X, Y, U, V, zorder = 1) 

plt.axes().set_aspect('equal') 
plt.show()



Working with Maps

156

The preceding script will produce the following output:

How it works...
Although the script is a bit long, the purely graphical part is simple. The vector field is stored  
in the matrices U and V: the coordinates of each vector we sampled from the vector field.  
The matrices X and Y contain the sample positions. The matrices X, Y, U, and V are passed to 
pyplot.quiver(), which renders the vector field. Note that pyplot.quiver() can take 
just U and V as parameters, but then the legend will show the indexes of the samples rather 
than their coordinates.

As the vector field that we used as an illustration here is the fluid flow around a cylinder,  
the cylinder itself is shown as follows:

shape = patches.Circle((0, 0), radius = 1., lw = 2., fc = 'w', ec  
  = 'k', zorder = 0) 
plt.gca().add_patch(shape)

The vector field inside the cylinder does not appear; we use a masked array. We first create  
a mask that defines which samples should be shown. Then, we apply this mask on U and V,  
as shown in the following script:



Chapter 6

157

M = (X ** 2 + Y ** 2) < 1. 
U = np.ma.masked_array(U, mask = M) 
V = np.ma.masked_array(V, mask = M) 

This allows you to hide singularities in a solution.

Visualizing the streamlines of a 2D vector 
field

Using arrows to represent a vector field works fairly well. But matplotlib can do better than 
this—it can show the streamlines of a vector field. A streamline shows how the vector field 
flows. In this recipe, we will show you how to create streamlines.

How to do it...
Let's use the fluid flow example of the previous recipe. We will simply replace the arrows  
with streamlines, as shown in the following code:

import numpy as np
import sympy 
from sympy.abc import x, y 
from matplotlib import pyplot as plt 
import matplotlib.patches as patches 

def cylinder_stream_function(U = 1, R = 1): 
  r = sympy.sqrt(x ** 2 + y ** 2) 
  theta = sympy.atan2(y, x) 
  return U * (r - R ** 2 / r) * sympy.sin(theta) 

def velocity_field(psi): 
  u = sympy.lambdify((x, y), psi.diff(y), 'numpy') 
  v = sympy.lambdify((x, y), -psi.diff(x), 'numpy') 
  return u, v 

psi = cylinder_stream_function() 
U_func, V_func = velocity_field(psi) 

xmin, xmax, ymin, ymax = -3, 3, -3, 3 
Y, X = np.ogrid[ymin:ymax:128j, xmin:xmax:128j] 
U, V = U_func(X, Y), V_func(X, Y) 

M = (X ** 2 + Y ** 2) < 1. 
U = np.ma.masked_array(U, mask = M) 
V = np.ma.masked_array(V, mask = M) 



Working with Maps

158

shape = patches.Circle((0, 0), radius = 1., lw = 2., fc = 'w', ec  
  = 'k', zorder = 0) 
plt.gca().add_patch(shape) 

plt.streamplot(X, Y, U, V, color = 'k') 

plt.axes().set_aspect('equal') 
plt.show()

The preceding script will display a flow around the cylinder, as shown in the following screenshot:

How it works...
The code generating the sample vectors' coordinates is the same as in the previous recipe. 
Here, we use more samples (128*128 instead of 32*32) to get accurate streamlines. Apart 
from this, the only difference is that we use pyplot.streamlines() instead of pyplot.
quiver(). The four mandatory parameters are the same: the coordinates X and Y of the 
samples, and the coordinates U and V of the vectors. The optional parameter color is used 
to set the streamlines' colors.



Chapter 6

159

There's more...
We can color the streamlines using a colormap with the optional parameter color and cmap:

plt.streamplot(X, Y, U, V, color = U ** 2 + V ** 2, cmap =  
  cm.binary)

The color parameter takes a 2D array, which is used to color the streamlines. In this example, 
the color reflects the velocity of the flow as shown in the following output:





7
Working with  

3D Figures

In this chapter, we will cover the following topics:

ff Creating 3D scatter plots

ff Creating 3D curve plots

ff Plotting a scalar field in 3D

ff Plotting a parametric 3D surface

ff Embedding 2D figures in a 3D figure

ff Creating a 3D bar plot

Introduction
matplotlib has ever-increasing support for three-dimensional plots. Since Version 1.2, the 
API to make 3D figures has been very similar to the 2D API. Adding one more dimension to 
your plots can help you to visualize more information at a glance. Also, 3D plots are quite an 
attention-grabber on a presentation or during a class. In this chapter, we are going to explore 
what matplotlib can do with a third dimension.

Creating 3D scatter plots
Scatter plots are very simple plots; for each point of your dataset, one point is shown in the 
figure. The coordinates of one point are simply the coordinates of the corresponding data. We 
have already explored scatter plots in two dimensions in Chapter 1, First Steps. In this recipe, 
we are going to see that scatter plots in three dimensions work the same way with just very 
minor changes.



Working with 3D Figures

162

In order to have some interesting data to visualize for this example, we are going to use 
the Lorenz strange attractor. This is a 3D structure that represents the solution of a simple 
dynamical system, coming from meteorology. This dynamical system is a famous textbook 
example of a chaotic system.

How to do it...
In the following code, we are going to call the figure-rendering methods from an Axes  
instance rather than calling the methods from pyplot:

import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

# Dataset generation
a, b, c = 10., 28., 8. / 3.
def lorenz_map(X, dt = 1e-2):
  X_dt = np.array([a * (X[1] - X[0]),
                             X[0] * (b - X[2]) - X[1],
                             X[0] * X[1] - c * X[2]])
  return X + dt * X_dt

points = np.zeros((2000, 3))
X = np.array([.1, .0, .0])
for i in range(points.shape[0]):
  points[i], X = X, lorenz_map(X)

# Plotting
fig = plt.figure()
ax = fig.gca(projection = '3d')

ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set_zlabel('Z axis')
ax.set_title('Lorenz Attractor a=%0.2f b=%0.2f c=%0.2f' % (a, b,  
  c))

ax.scatter(points[:, 0], points[:, 1],  points[:, 2], zdir = 'y',  
  c = 'k')
plt.show()



Chapter 7

163

The preceding code will show the now familiar user interface with the following figure:

Before our eyes, the Lorenz attractor! If you drag your mouse inside the figure (move the 
mouse with the left button pressed), the 3D shape will rotate as if you were manipulating a 
trackball. You can rotate the figure and inspect the Lorenz attractor in all possible angles.

Note that although all dots are shown in blue, some points tend to be shaded toward white. 
matplotlib applies this fog-like effect to enhance the depth perception of scatter plots. Dots 
that are farther from our eyes will be dithered towards white—an old trick that painters from 
the Renaissance period already knew.

How it works...
We will not linger too much on the data generation for this example; that is not the point  
here. We just need to know that the dataset is stored in matrix points with three columns,  
one column per dimension.

Before doing anything three-dimensional with matplotlib, we first need to import the 3D 
extension for matplotlib: this is the purpose of the following import directive:

from mpl_toolkits.mplot3d import Axes3D



Working with 3D Figures

164

So far, most of the time, we have submitted all our rendering directives by calling methods 
from pyplot. However, for three-dimensional plots, things are a tad more involved, as shown 
in the following code:

fig = plt.figure()
ax = fig.gca(projection = '3d')

We create a Figure instance and attach an Axes3D instance to it. While the Axes instance 
is in charge of the usual 2D rendering, Axes3D will take care of the 3D rendering. Then, 3D 
scatter plots work exactly like their 2D counterparts, as shown in the following code:

ax.scatter(points[:, 0], points[:, 1],  points[:, 2])

We are giving the X, Y, and Z coordinates of the points to represent. Here, we simply give the 
three columns of the points' matrix. We could use a plain Python list, but we use a NumPy 
array just for its convenience. Again, note that we call the scatter() method of the Axes3D 
instance, not the scatter method from pyplot. Only the scatter() method from Axes3D 
interprets 3D data.

Finally, the functions we explored in Chapter 3, Working with Annotations, are also available, 
although they are called from the Axes3D instance. The title is set with set_title() and 
the axes are annotated with set_xlabel(), set_ylabel(), and set_zlabel().

There's more...
As we have just seen, scatter plots in 3D work like they would in 2D. Indeed, apart from the 
setup code to create an Axes3D instance, everything seems to work like it would in 2D. This 
is not just an impression. For instance, customizing a scatter plot works in exactly the same 
way. Let's change the marker's shape and color by replacing the call to Axes3D.scatter() 
as follows:

ax.scatter(points[:, 0], points[:, 1],  points[:, 2],
                 marker = 's',
                 edgecolor = '.5',
           facecolor = '.5')



Chapter 7

165

The output will now look like the following figure:

Indeed, all the tips and tricks from Chapter 2, Customizing the Color and Styles, stand true  
in 3D.

Creating 3D curve plots
As the previous recipe has demonstrated, what we have learned in the previous chapters stands 
true when creating three-dimensional figures. Let's confirm this by plotting 3D parametric curves. 
In this recipe, we keep the same dataset as in the previous recipe; that is, the Lorenz attractor.

How to do it…
In 2D, we draw curves by calling pyplot.plot(). As the previous recipe hinted, all we  
have to do here is set up an Axes3D instance and call its plot() method, as shown in  
the following code:

import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

a, b, c = 10., 28., 8. / 3.



Working with 3D Figures

166

def lorenz_map(X, dt = 1e-2):
  X_dt = np.array([a * (X[1] - X[0]),
                            X[0] * (b - X[2]) - X[1],
                            X[0] * X[1] - c * X[2]])
  return X + dt * X_dt

points = np.zeros((10000, 3))
X = np.array([.1, .0, .0])
for i in range(points.shape[0]):
  points[i], X = X, lorenz_map(X)

fig = plt.figure()
ax = fig.gca(projection = '3d')
ax.plot(points[:, 0], points[:, 1],  points[:, 2], c = 'k')
plt.show()

The preceding code will show the familiar Lorenz attractor, but instead of simply showing each 
data point, the points are linked by a curve as shown in the following figure:

When we rotate the view with the user interface, the particular intertwined spiral structure of 
the Lorenz attractor is very apparent.



Chapter 7

167

How it works...
As for any three-dimensional figure, we first set up an Axes3D instance. Then, the call 
to plot() works similar to its 2D counterpart: we give it one list per dimension and the 
coordinates of the points for each dimension.

Plotting a scalar field in 3D
So far, we have seen that 3D plots essentially mimic their 2D counterparts. However, there's 
more to matplotlib's three-dimensional plotting abilities. A lot of figures specific to the third 
dimension are also possible. Let's start with a simple use case: plotting a 2D scalar field  
as a 3D surface.

How to do it...
As usual, we are going to generate some test data, set up an Axes3D instance, and pass our 
data to it:

import numpy as np
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

x = np.linspace(-3, 3, 256)
y = np.linspace(-3, 3, 256)
X, Y = np.meshgrid(x, y)
Z = np.sinc(np.sqrt(X ** 2 + Y ** 2))

fig = plt.figure()
ax = fig.gca(projection = '3d')
ax.plot_surface(X, Y, Z, cmap=cm.gray)
plt.show()



Working with 3D Figures

168

The preceding code will show the following figure:

How it works...
The data generation works in exactly the same way as was demonstrated in Chapter 6, 
Working with Maps. Two matrices, X and Y, are created holding the coordinates of a regular 
grid. We compute the matrix Z and the scalar field functions of X and Y.

From here, things get very trivial; we call the plot_surface() method, which takes X, Y, 
and Z to display the scalar field as a 3D surface. The colors are taken from a colormap  
(the cmap optional parameter) and the matrix Z.

There's more...
You might not want to see the black curves shown on the 3D surface. This can be done using 
some additional optional parameters of plot_surface() as shown in the following code:

ax.plot_surface(X, Y, Z,
    cmap=cm.gray,
    linewidth=0,
    antialiased=False)

The black curves are now gone, making for a simpler figure as follows:



Chapter 7

169

On the other hand, we might want to keep the black curves and get rid of the fancy colors. 
This can also be done with the optional parameters of plot_surface() as shown in the 
following code:

ax.plot_surface(X, Y, Z, color = 'w')

And only the black curves remain, making for a minimalist surface plot as shown in the 
following figure:



Working with 3D Figures

170

Finally, we might want to get rid of the hidden faces removal and want the surface to  
be made of wireframe. Now, this is not something that plot_surface() can achieve. 
However, plot_wireframe() was made just for this, as shown in the following code:

ax.plot_wireframe(X, Y, Z, cstride=8, rstride=8, color = 'k')

Now, the same surface is rendered in a wireframe style as shown in the following figure:

The plot_wireframe() parameter takes the same X, Y, and Z coordinates as input as the 
plot_surface() parameter. We use two optional parameters, rstride and cstride, to 
tell matplotlib to skip every eight coordinates on the X and Y axes. Without this, the space 
between the curves would be too small and we will see just a big black outline.

Plotting a parametric 3D surface
In the previous recipe, we used plot_surface() to plot a scalar field: that is, a function of 
the f(x, y) = z form. However, matplotlib is able to plot a generic, parametric 3D surface. 
Let's demonstrate this by plotting a torus, which is a fairly simple parametric surface.



Chapter 7

171

How to do it...
We are going to use plot_surface() again to display a torus, using the following code:

import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

# Generate torus mesh
angle = np.linspace(0, 2 * np.pi, 32)
theta, phi = np.meshgrid(angle, angle)
r, R = .25, 1.
X = (R + r * np.cos(phi)) * np.cos(theta)
Y = (R + r * np.cos(phi)) * np.sin(theta)
Z = r * np.sin(phi)

# Display the mesh
fig = plt.figure()
ax = fig.gca(projection = '3d')
ax.set_xlim3d(-1, 1)
ax.set_ylim3d(-1, 1)
ax.set_zlim3d(-1, 1)
ax.plot_surface(X, Y, Z, color = 'w', rstride = 1, cstride = 1)
plt.show()

The preceding code will display our torus as follows:



Working with 3D Figures

172

How it works...
A torus is a surface that can be parameterized with two parameters, theta and phi, varying 
from 0 to 2 * pi, as shown in the following code:

angle = np.linspace(0, 2 * np.pi, 32)
theta, phi = np.meshgrid(angle, angle)

The theta and phi variables describe a regular grid layout. The 3D coordinates of the torus 
mesh are written as a function of theta and phi, as shown in the following code:

r, R = .25, 1.
X = (R + r * np.cos(phi)) * np.cos(theta)
Y = (R + r * np.cos(phi)) * np.sin(theta)
Z = r * np.sin(phi)

Then, we simply pass X, Y, and Z to the plot_surface() method. The plot_surface() 
method assumes that X, Y, and Z are gridded data. We need to set the optional parameters 
rstride and cstride to make it clear that X, Y, and Z are gridded data.

We explicitly set the axes' limit to the [-1, 1] range. By default, while creating 3D plots, 
matplotlib will automatically scale each axis. Our torus extends in the [-1, 1] range on the 
X and Y axes, but only in the [-.25, .25] range on the Z axis. If we let matplotlib scale the 
axis, the torus will appear stretched on the Z axis as shown in the following figure:

Thus, when plotting a 3D surface, we have to manually set each axis range to get a properly 
scaled view.



Chapter 7

173

There's more...
As shown in the previous recipe, we can replace the call to plot_surface() with a call to 
plot_wireframe() in order to get a wireframe view of the torus using the following code:

ax.plot_wireframe(X, Y, Z, color = 'k', rstride = 1, cstride = 1)

This simple change is enough to get a wireframe view as shown in the following figure:

Embedding 2D figures in a 3D figure
We have seen in Chapter 3, Working with Annotations, how to annotate figures. A powerful way 
to annotate a three-dimensional figure is to simply use two-dimensional figures. This recipe is a 
simple example to illustrate this possibility.

How to do it...
To illustrate the idea, we are going to plot a simple 3D surface and two curves using only the 
primitives that we have already seen before, as shown in the following code:

import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt



Working with 3D Figures

174

x = np.linspace(-3, 3, 256)
y = np.linspace(-3, 3, 256)
X, Y = np.meshgrid(x, y)
Z = np.exp(-(X ** 2 + Y ** 2))
u = np.exp(-(x ** 2))

fig = plt.figure()
ax = fig.gca(projection = '3d')
ax.set_zlim3d(0, 3)
ax.plot(x, u, zs=3, zdir='y', lw = 2, color = '.75')
ax.plot(x, u, zs=-3, zdir='x', lw = 2., color = 'k')
ax.plot_surface(X, Y, Z, color = 'w')

plt.show()

The preceding code will produce the following figure:

The black and gray curves are drawn as 2D curves projected on a plane.



Chapter 7

175

How it works...
The 3D surface is generated as shown in the previous recipes. The Axes3D instance, ax, 
supports the usual 2D rendering commands such as plot(), as shown in the following code:

ax.plot(x, u, zs=3, zdir='y', lw = 2, color = '.75')

However, the call to plot() has two new optional parameters: zs and zdir:

ff Zdir: This determines on which plane the 2D plot will be drawn, X, Y, or Z

ff Zs: This determines the offset of the plane

Thus, to embed 2D figures in a 3D figure, we simply need to remember that all the 2D 
primitives are available with Axes3D. We just have two optional parameters, zdir and  
zs, to set to place the plane on which the figures need to be rendered.

There's more...
Embedding 2D figures in a 3D figure is very simple, but it opens up a lot of possibilities to 
create sophisticated figures using the simple primitives we have explored so far. For instance, 
we already know everything to make a layered bar graph using the following code:

import numpy as np
from matplotlib import cm
import matplotlib.colors as col
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

# Data generation
alpha = 1. / np.linspace(1, 8, 5)
t = np.linspace(0, 5, 16)
T, A = np.meshgrid(t, alpha)
data = np.exp(-T * A)

# Plotting
fig = plt.figure()
ax = fig.gca(projection = '3d')
cmap = cm.ScalarMappable(col.Normalize(0, len(alpha)), cm.gray)
for i, row in enumerate(data):
  ax.bar(4 * t, row, zs=i, zdir='y', alpha=0.8, color=cmap.to_rgba(i))
plt.show()



Working with 3D Figures

176

The preceding code will produce the following figure:

We can see that the preceding code uses features introduced in the previous chapters:

ff The creation of a bar graph has been covered in Chapter 1, First Steps

ff The coloring of bar graphs using a colormap has been covered in  
Chapter 2, Customizing the Color and Styles

ff The layering of bar graphs has been covered in the present recipe

Creating a 3D bar plot
Using several 2D layers in a 3D figure, we can plot multiple bar plots. However, we can also go 
full 3D and plot bar plots with actual 3D bars.

How to do it...
To demonstrate 3D bar plots, we will use the simple, synthetic dataset from the previous 
recipe as shown in the following code:

import numpy as np
from mpl_toolkits.mplot3d import Axes3D



Chapter 7

177

import matplotlib.pyplot as plt

# Data generation
alpha = np.linspace(1, 8, 5)
t = np.linspace(0, 5, 16)
T, A = np.meshgrid(t, alpha)
data = np.exp(-T * (1. / A))

# Plotting
fig = plt.figure()
ax = fig.gca(projection = '3d')

Xi = T.flatten()
Yi = A.flatten()
Zi = np.zeros(data.size)

dx = .25 * np.ones(data.size)
dy = .25 * np.ones(data.size)
dz = data.flatten()

ax.set_xlabel('T')
ax.set_ylabel('Alpha')
ax.bar3d(Xi, Yi, Zi, dx, dy, dz, color = 'w')

plt.show()

This time, the bars appear as 3D blocks as shown in the following figure:



Working with 3D Figures

178

How it works...
The bars are positioned with a grid layout. The bar3d() method takes six mandatory 
parameters as the input. The first three parameters are the X, Y, and Z coordinates of the 
lower end of each bar. Here, we build the coordinates of the bars from the dataset as follows:

Xi = T.flatten()
Yi = A.flatten()
Zi = np.zeros(data.size)

Each bar will start at the same level, 0. The X and Y coordinates are those of the dataset. 
The bar3d() method takes the list of coordinates as the input, not the gridded coordinates, 
which is why we call the flatten method on the matrices A and T.

The next three mandatory parameters of the bar3d() method are the dimensions of each 
bar on each dimension. Here, the height of the bars is taken from the data matrix. The bar 
width and depth are set to .25, as shown in the following code:

dx = .25 * np.ones(data.size)
dy = .25 * np.ones(data.size)
dz = data.flatten()

We can now call bar3d() using the following code:

ax.bar3d(Xi, Yi, Zi, dx, dy, dz, color = 'w')



8
User Interface

In this chapter, we will cover:

ff Making a user-controllable plot

ff Integrating a plot into the Tkinter user interface

ff Integrating a plot into the wxWidgets user interface

ff Integrating a plot into the GTK user interface

ff Integrating a plot into a Pyglet application

Introduction
matplotlib can do more than plot figures; it can plot figures you can interact with. An interactive 
visualization can be a great way to explore some data and discover some interesting patterns. 
Also, an interactive figure can be a great support for teaching purposes. In this chapter, we are 
going to explore the different options we have to create such interactive plots.

Making a user-controllable plot
Out of the box, without requiring any additional packages, matplotlib offers primitives to add 
controllers on a figure so that a user can interact with it. In this recipe, we are going to see 
how to plot a famous parametric curve: the SuperShape curve. This curve is controlled by six 
parameters: A, B, M, N1, N2, and N3. These parameters determine the shape of the curve. 
They can be set interactively by the user by moving the cursor on the figure.



User Interface

180

How to do it...
The following code will display a curve using pyplot.plot(), which at this point should be 
simple. However, we now use user interface elements (more commonly called widgets), that 
is, sliders. This can be done with the following steps:

1.	 We start with the necessary import directives as follows:
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.widgets import Slider

2.	 The SuperShape curve is defined by the following function:
def supershape_radius(phi, a, b, m, n1, n2, n3):
  theta = .25 * m * phi
  cos = np.fabs(np.cos(theta) / a) ** n2
  sin = np.fabs(np.sin(theta) / b) ** n3
  r = (cos + sin) ** (-1. / n1)
  r /= np.max(r)
  return r

3.	 We then define the initial values for the parameters of the SuperShape curve using 
the following code:
phi = np.linspace(0, 2 * np.pi, 1024)
m_init = 3
n1_init = 2
n2_init = 18
n3_init = 18

4.	 We define the plot and place sliders as follows:
fig = plt.figure()
ax = fig.add_subplot(111, polar = True)

ax_m  = plt.axes([0.05, 0.05, 0.25, 0.025])
ax_n1 = plt.axes([0.05, 0.10, 0.25, 0.025])
ax_n2 = plt.axes([0.7, 0.05, 0.25, 0.025])
ax_n3 = plt.axes([0.7, 0.10, 0.25, 0.025])

slider_m  = Slider(ax_m,  'm',  1, 20, valinit = m_init)
slider_n1 = Slider(ax_n1, 'n1', .1, 10, valinit = n1_init)
slider_n2 = Slider(ax_n2, 'n2', .1, 20, valinit = n2_init)
slider_n3 = Slider(ax_n3, 'n3', .1, 20, valinit = n3_init)

5.	 We render the curve once by using the following code:
r = supershape_radius(phi, 1, 1, m_init, n1_init, n2_init,  
  n3_init)
lines, = ax.plot(phi, r, lw = 3.)



Chapter 8

181

6.	 We specify what to do when a slider is updated by the user, as shown in the  
following code:
def update(val):
    r = supershape_radius(phi, 1, 1, np.floor(slider_m.val), 
slider_n1.val, slider_n2.val, slider_n3.val)
    lines.set_ydata(r)
    fig.canvas.draw_idle()

slider_n1.on_changed(update)
slider_n2.on_changed(update)
slider_n3.on_changed(update)
slider_m.on_changed(update)

7.	 We are now done and can conclude our script with the following:
plt.show()

8.	 The preceding code will display a curve as expected, with (rudimentary) slider 
controls, as shown in the following figure:

You can drag the sliders on the left or the right and see the curve change. Note that on older 
computers, the animation feels noticeably sluggish.



User Interface

182

How it works...
The code is a bit longer than usual. Let's break it up!

The SuperShape curve is a polar curve. The supershape_radius function computes a 
radius for every angle in the [0, 2 * pi] interval. The function takes as an input an array  
of angles and the six parameters of the SuperShape curve.

We create a Figure instance, fig, and an Axes instance, ax, explicitly as shown in the 
following code:

fig = plt.figure()
ax = fig.add_subplot(111, polar = True)

All widgets are defined in the matplotlib.widgets package. We place four slider widgets 
on the figure for the parameters M, N1, N2, and N3.

Each slider is associated with a subfigure created by a call to plot.axes(). Each Slider 
instance is created by a call to the Slider constructor. The constructor takes four mandatory 
parameters: a subfigure instance, a label, a minimum value, and a maximum value. We use 
the optional parameter valinit to set the initial position of each slider, as shown in the 
following code:

ax_m  = plt.axes([0.05, 0.05, 0.25, 0.025])
ax_n1 = plt.axes([0.05, 0.10, 0.25, 0.025])
ax_n2 = plt.axes([0.7, 0.05, 0.25, 0.025])
ax_n3 = plt.axes([0.7, 0.10, 0.25, 0.025])

slider_m  = Slider(ax_m,  'm',  1, 20, valinit = m_init)
slider_n1 = Slider(ax_n1, 'n1', .1, 10, valinit = n1_init)
slider_n2 = Slider(ax_n2, 'n2', .1, 20, valinit = n2_init)
slider_n3 = Slider(ax_n3, 'n3', .1, 20, valinit = n3_init)

We plot the curve itself, but we keep track of what will be rendered: a collection of lines stored 
in the lines variable, which is done using the following code:

lines, = ax.plot(phi, r, lw = 3.)

We define the behavior of each slider when their positions are changed: they will call a 
function named update:

slider_n1.on_changed(update)
slider_n2.on_changed(update)
slider_n3.on_changed(update)
slider_m.on_changed(update)



Chapter 8

183

The update function reads the position of each slider and the position of each point of the 
curve to be displayed is updated, the collection of lines is updated, and finally, the Figure 
instance fig is notified of the change, as shown in the following code:

def update(val):
    lines.set_ydata(supershape_radius(phi, 1, 1, np.floor(slider_m. 
      val), slider_n1.val, slider_n2.val, slider_n3.val))
    fig.canvas.draw_idle()

Finally, we are ready to plot everything using the following:

plt.show()

There's more...
Although slider controls are definitely a nice way to adjust a parameter interactively, there are 
more widgets available in the matplotlib.widgets package. Buttons and checkboxes are 
also available.

Integrating a plot to a Tkinter user interface
matplotlib provides rudimentary widgets to build interactive figures. However, those widgets 
are very rudimentary and do not scale well for anything that needs more than a couple of 
controllers. A real graphical user interface library is more adapted to creating sophisticated 
interactions. Fortunately, Python comes with such a library: Tkinter. Tkinter allows you to 
create some widgets and give them a windows layout. Even better, matplotlib provides a 
convenient hook to integrate plots to a user interface made with Tkinter. In this recipe,  
we will be reproducing the previous example, but using Tkinter for the user interface part.

How to do it...
Conveniently, matplotlib provides a special Tkinter widget that we can use to render figures. 
Updating the figure inside that special widget is done as in the previous recipe. Here are the 
steps that we need to follow:

1.	 We start with the mandatory import directives as follows:
import numpy as np
from tkinter import *
  
from matplotlib.backends.backend_tkagg import  
  FigureCanvasTkAgg
from matplotlib.figure import Figure

Note that the import directive for Tkinter here is valid for Python 3. If you are using 
Python 2, then you should replace tkinter with Tkinter.



User Interface

184

2.	 Then, we define the function for the SuperShape curve using the following code:
def supershape_radius(phi, a, b, m, n1, n2, n3):
  theta = .25 * m * phi
  cos = np.fabs(np.cos(theta) / a) ** n2
  sin = np.fabs(np.sin(theta) / b) ** n3
  r = (cos + sin) ** (-1. / n1)

  r /= np.max(r)
  return r

3.	 We define a utility object to linearly scale a range into another as follows:
class LinearScaling(object):
  def __init__(self, src_range, dst_range):
    self.src_start, src_diff = src_range[0], src_range[1] -  
      src_range[0]
    self.dst_start, dst_diff = dst_range[0], dst_range[1] - dst_ 
      range[0]
    self.src_to_dst_coeff = dst_diff / src_diff
    self.dst_to_src_coeff = src_diff / dst_diff

  def src_to_dst(self, X):
    return (X - self.src_start) * self.src_to_dst_coeff +  
      self.dst_start

  def dst_to_src(self, X):
    return (X - self.dst_start) *  
      self.dst_to_src_coeff + self.src_start

4.	 Now comes the user interface, which is coded as follows:
class SuperShapeFrame(Frame):
  def __init__(self, master = None):
    Frame.__init__(self, master)
    self.grid()
    self.m = 3
    self.n1 = 2
    self.n1_scaling = LinearScaling((.1, 20), (0, 200))
    self.n2 = 18
    self.n2_scaling = LinearScaling((.1, 20), (0, 200))
    self.n3 = 18
    self.n3_scaling = LinearScaling((.1, 20), (0, 200))

    self.fig = Figure((6, 6), dpi = 80)
    canvas = FigureCanvasTkAgg(self.fig, master = self)
    canvas.get_tk_widget().grid(row = 0, column = 0, columnspan =  
      4)



Chapter 8

185

    label = Label(self, text = 'M')
    label.grid(row = 1, column = 1)
    self.m_slider = Scale(self, from_ = 1, to = 20, orient =  
      HORIZONTAL, command = lambda i : self.update_m())

    self.m_slider.grid(row = 1, column = 2)

    label = Label(self, text = 'N1')
    label.grid(row = 2, column = 1)
    self.n1_slider = Scale(self, from_ = 0, to = 200, orient =  
      HORIZONTAL, command = lambda i : self.update_n1())
    self.n1_slider.grid(row = 2, column = 2)

    label = Label(self, text = 'N2')
    label.grid(row = 3, column = 1)
    self.n2_slider = Scale(self, from_ = 0, to = 200, orient =  
      HORIZONTAL, command = lambda i : self.update_n2())
    self.n2_slider.grid(row = 3, column = 2)

    label = Label(self, text = 'N3')
    label.grid(row = 4, column = 1)
    self.n3_slider = Scale(self, from_ = 0, to = 200, orient =  
      HORIZONTAL, command = lambda i : self.update_n3())
    self.n3_slider.grid(row = 4, column = 2)

    self.draw_figure()

  def update_m(self):
    self.m = self.m_slider.get()
    self.refresh_figure()

  def update_n1(self):
    self.n1 = self.n1_scaling.dst_to_src(self.n1_slider.get())
    self.refresh_figure()

  def update_n2(self):
    self.n2 = self.n2_scaling.dst_to_src(self.n2_slider.get())
    self.refresh_figure()

  def update_n3(self):
    self.n3 = self.n3_scaling.dst_to_src(self.n3_slider.get())
    self.refresh_figure()

  def refresh_figure(self):
    r = supershape_radius(self.phi, 1, 1, self.m, self.n1, self. 
    n2, self.n3)
    self.lines.set_ydata(r)
    self.fig.canvas.draw_idle()



User Interface

186

  def draw_figure(self):
    self.phi = np.linspace(0, 2 * numpy.pi, 1024)
    r = supershape_radius(self.phi, 1, 1, self.m, self.n1, self. 
    n2, self.n3)
    ax = self.fig.add_subplot(111, polar = True)
    self.lines, = ax.plot(self.phi, r, lw = 3.)
    self.fig.canvas.draw()

5.	 Finally, we set up and start our user interface as follows:
app = SuperShapeFrame()
app.master.title('SuperShape')
app.mainloop()

6.	 The SuperShape curve is drawn and can be controlled with four slider widgets as 
shown in the following figure:



Chapter 8

187

How it works...
In this example, all the work is done by the SuperShapeFrame object, which is a subclass of 
the TKinter Frame class. A Frame object is simply a window, in Tkinter lexicon.

matplotlib provides a FigureCanvasTKAgg object as part of the matplotlib.backends.
backend_tkagg module. A FigureCanvasTKAgg object encapsulates a Figure instance 
and behaves like a Tkinter object. Thus, in this example, we create a window (the Frame 
object) and we populate it with widgets: four slider instances and a FigureCanvasTKAgg 
instance. The canvas is created as follows:

self.fig = Figure((6, 6), dpi = 80)
canvas = FigureCanvasTkAgg(self.fig, master = self)

We first create a matplotlib figure and simply pass it as a parameter to the 
FigureCanvasTkAgg constructor. We do not need to keep track of the canvas itself; we just 
need to keep track of the figure. The size of the canvas depends on the size of the figure and 
its resolution. Here, our figure is a square of six units at 80 dpi: 480 pixels.

There are two operations we need to implement: drawing the figure, and refreshing it. We only 
need to draw the figure once. Then, when the user changes some parameters of the curve we 
have displayed, we have to refresh the figure.

The figure is drawn using the draw_figure() method as follows:

  def draw_figure(self):
    self.phi = np.linspace(0, 2 * np.pi, 1024)
    r = supershape_radius(self.phi, 1, 1, self.m, self.n1, self.n2,  
    self.n3)
    ax = self.fig.add_subplot(111, polar = True)
    self.lines, = ax.plot(self.phi, r, lw = 3.)
    self.fig.canvas.draw()

We attach an Axes instance, ax, to our Figure instance. We render our curve and keep a 
track of the result of this operation: a collection of lines. Finally, we tell the canvas to render 
the figure.

The figure is refreshed using the refresh_figure() method as follows:

  def refresh_figure(self):
    r = supershape_radius(self.phi, 1, 1, self.m, self.n1, self.n2,  
    self.n3)
    self.lines.set_ydata(r)
    self.fig.canvas.draw_idle()



User Interface

188

When refreshing the figure, we do not re-plot everything (but it can be done that way); we 
simply update the collection of lines and notify the canvas to update the figure. Every time  
a slider is modified by the user, we refresh the figure by calling refresh_figure().

One quirk of using Tkinter sliders is that those sliders return only integer values; however, in 
practice, at least in a science or engineering context, we need floating point values. To work 
around this issue, we implement a LinearScaling class, linearly scaling values from one 
range to the other. The sliders are given a range of 0 to 200. One instance of LinearScaling 
is created for each of the four parameters to convert the slider positions to the actual value of 
the parameter.

Integrating a plot to a wxWidgets user 
interface

Using Tkinter, we can combine the plotting abilities of matplotlib and a fully featured GUI 
library. This solution has the advantage of relying on standard Python only. However, a classical 
argument against Tkinter is how it looks: the user interface has a look and feel of its own, not 
the look and feel of the platform it runs on.

The wxWidgets user interface is another GUI module for Python, binding the wx library. The  
wx library exposes a common API to create graphical interfaces on Windows, OS X, and Linux. 
The graphical interfaces created with wx will have the look and feel of the platform they run 
on. In this recipe, we will look at how we can interface wxWidgets with matplotlib.

How to do it...
The general idea is very similar to what has been done with the matplotlib/Tkinter integration. 
matplotlib provides a special wxWidget widget that embeds a Figure object. Creating and 
updating that Figure object works the same way as before, as shown in the following steps:

1.	 We start with the import directives as follows:
import wx
import numpy as np

from matplotlib.backends.backend_wxagg import  
  FigureCanvasWxAgg
from matplotlib.figure import Figure

2.	 We add the function to define a SuperShape curve using the following code:
def supershape_radius(phi, a, b, m, n1, n2, n3):
  theta = .25 * m * phi

  cos = np.fabs(np.cos(theta) / a) ** n2



Chapter 8

189

  sin = np.fabs(np.sin(theta) / b) ** n3
  r = (cos + sin) ** (-1. / n1)
  r /= np.max(r)
  return r

3.	 We are going to need a utility object to scale linearly from one range to the other  
as follows:
class LinearScaling(object):
  def __init__(self, src_range, dst_range):
    self.src_start, src_diff = src_range[0], src_range[1] - src_ 
      range[0]
    self.dst_start, dst_diff = dst_range[0], dst_range[1] - dst_ 
      range[0]
    self.src_to_dst_coeff = dst_diff / src_diff
    self.dst_to_src_coeff = src_diff / dst_diff

  def src_to_dst(self, X):
    return (X - self.src_start) * self.src_to_dst_coeff + self. 
      dst_start

  def dst_to_src(self, X):
    return (X - self.dst_start) * self.dst_to_src_coeff + self. 
      src_start

4.	 We define our user interface using the following code:
class SuperShapeFrame(wx.Frame):
  def __init__(self, parent, id, title):
    wx.Frame.__init__(self, parent, id, title,
      style = wx.DEFAULT_FRAME_STYLE ^ wx.RESIZE_BORDER,
      size = (480, 640))
    self.m = 3
    self.n1 = 2
    self.n1_scaling = LinearScaling((.01, 20), (0, 200))

    self.n2 = 18
    self.n2_scaling = LinearScaling((.01, 20), (0, 200))

    self.n3 = 18
    self.n3_scaling = LinearScaling((.01, 20), (0, 200))

    self.fig = Figure((6, 6), dpi = 80)

    panel = wx.Panel(self, -1)



User Interface

190

    self.m_slider = wx.Slider(panel, -1, self.m, 1, 20, size =  
      (250, -1), style = wx.SL_AUTOTICKS | wx.SL_HORIZONTAL |  
      wx.SL_LABELS)

    self.n1_slider = wx.Slider(panel, -1, self.n1_scaling.src_to_ 
      dst(self.n1), 0, 200, size = (250, -1), style = wx.SL_ 
      AUTOTICKS | wx.SL_HORIZONTAL | wx.SL_LABELS)

    self.n2_slider = wx.Slider(panel, -1, self.n1_scaling.src_to_ 
      dst(self.n2), 0, 200, size = (250, -1), style = wx.SL_ 
      AUTOTICKS | wx.SL_HORIZONTAL | wx.SL_LABELS)

    self.n3_slider = wx.Slider(panel, -1, self.n1_scaling.src_to_ 
      dst(self.n3), 0, 200, size = (250, -1), style = wx.SL_ 
      AUTOTICKS | wx.SL_HORIZONTAL | wx.SL_LABELS)

    self.m_slider.Bind(wx.EVT_SCROLL, self.on_m_slide)
    self.n1_slider.Bind(wx.EVT_SCROLL, self.on_n1_slide)
    self.n2_slider.Bind(wx.EVT_SCROLL, self.on_n2_slide)
    self.n3_slider.Bind(wx.EVT_SCROLL, self.on_n3_slide)

    sizer = wx.BoxSizer(wx.VERTICAL)
    sizer.Add(FigureCanvasWxAgg(panel, -1, self.fig), 0, wx.TOP)
    sizer.Add(self.m_slider,  0, wx.ALIGN_CENTER)
    sizer.Add(self.n1_slider, 0, wx.ALIGN_CENTER)
    sizer.Add(self.n2_slider, 0, wx.ALIGN_CENTER)
    sizer.Add(self.n3_slider, 0, wx.ALIGN_CENTER)
    panel.SetSizer(sizer)

    self.draw_figure()

  def on_m_slide(self, event):
    self.m = self.m_slider.GetValue()
    self.refresh_figure()

  def on_n1_slide(self, event):

    self.n1 = self.n1_scaling.dst_to_src(self.n1_slider. 
    GetValue())
    self.refresh_figure()

  def on_n2_slide(self, event):
    self.n2 = self.n2_scaling.dst_to_src(self.n2_slider. 
    GetValue())
    self.refresh_figure()



Chapter 8

191

  def on_n3_slide(self, event):
    self.n3 = self.n3_scaling.dst_to_src(self.n3_slider. 
    GetValue())
    self.refresh_figure()

  def refresh_figure(self):
    r = supershape_radius(self.phi, 1, 1, self.m, self.n1, self. 
    n2, self.n3)
    self.lines.set_ydata(r)
    self.fig.canvas.draw_idle()

  def draw_figure(self):
    self.phi = np.linspace(0, 2 * np.pi, 1024)
    r = supershape_radius(self.phi, 1, 1, self.m, self.n1, self. 
    n2, self.n3)
    ax = self.fig.add_subplot(111, polar = True)
    self.lines, = ax.plot(self.phi, r, lw = 3.)

    self.fig.canvas.draw()

5.	 We can now initialize and start the user interface as follows:
app = wx.App(redirect = True)
top = SuperShapeFrame(None, -1, 'SuperShape')
top.Show()
app.MainLoop()



User Interface

192

6.	 This script produces a window showing the SuperShape curve. As in the previous 
recipes of this chapter, moving the sliders will modify the curve's shape, as shown  
in the following figure:

The appearance of the user interface will change depending on which platform you are running 
the script on: Linux, Windows, OS X, and so on.



Chapter 8

193

How it works...
matplotlib provides the FigureCanvasWxAgg object in the matplotlib.backends.
backend_wxagg module. The FigureCanvasWxAgg object is a wxWidget widget that 
contains a matplotlib figure. The actual size of that widget depends on the figure it contains. 
Here, we create a Figure instance of 6 x 6 units, with 80 pixels per unit: 480 x 480 pixels. 
Creating the Figure instance and its widget is as easy as running the following code:

self.fig = Figure((6, 6), dpi = 80)
canvas = FigureCanvasWxAgg(canvas_container, -1, self.fig)

As in the Tkinter example, there are two steps to handle with the matplotlib widget. We have to 
draw the figure and update it. Again, we create the draw_figure() and refresh_figure() 
methods to handle those steps.

The draw_figure() method creates an Axes instance, plots the curve, and keeps track  
of the result, that is, a set of lines. Finally, the plot is rendered as follows:

  def draw_figure(self):
    self.phi = np.linspace(0, 2 * np.pi, 1024)
    r = supershape_radius(self.phi, 1, 1, self.m, self.n1, self.n2,  
    self.n3)
    ax = self.fig.add_subplot(111, polar = True)
    self.lines, = ax.plot(self.phi, r, lw = 3.)

    self.fig.canvas.draw()

Then, every time the figure needs to be refreshed, because of some user input, we call 
refresh_figure(). The refresh_figure() method updates the set of lines that  
the plot is made of, using the following code:

  def refresh_figure(self):
    r = supershape_radius(self.phi, 1, 1, self.m, self.n1, self.n2,  
    self.n3)
    self.lines.set_ydata(r)
    self.fig.canvas.draw_idle()

So, as we can see, using wxWidget or Tkinter does not introduce any noticeable difference  
on the matplotlib side. Note that, just as for Tkinter, wxWidgets sliders can output only  
integer-valued positions, and we have to use the LinearScaling object of the previous 
recipe to get real-valued positions.



User Interface

194

Integrating a plot to a GTK user interface
GTK is a user interface library that is especially popular on Linux environments. GTK is very 
complete, and its PyGObject binding for Python is especially convenient to use. In this recipe, 
we demonstrate how to interface GTK with matplotlib. We use the SuperShape application for 
this demonstration.

Getting ready
This recipe demonstrates how to use the latest Python binding for GTK, PyGObject. Thus,  
you will need to install PyGObject (most Linux distributions have a standard package for it) 
and obviously, GTK, if you don't have them already.

How to do it...
By now, if you have gone through the previous recipes on Tkinter and WxWidget, you will see 
a pattern in the way matplotlib integrates with the user interface. The pattern is the same 
here: Matplolib provides a canvas object specific to GTK, which embeds a Figure instance. 
Integrating a plot to the GTK user interface can be done with the following steps:

1.	 We start with the necessary import directives as follows:
from gi.repository import Gtk
import numpy as np
from matplotlib.figure import Figure
from matplotlib.backends.backend_gtk3agg import 
FigureCanvasGTK3Agg

2.	 We add the following definition of the SuperShape curve:
def supershape_radius(phi, a, b, m, n1, n2, n3):
  theta = .25 * m * phi
  cos = np.fabs(np.cos(theta) / a) ** n2
  sin = np.fabs(np.sin(theta) / b) ** n3
  r = (cos + sin) ** (-1. / n1)
  r /= np.max(r)
  return r

3.	 Then we define our user interface using the following code:
class SuperShapeWindow(Gtk.Window):
  def __init__(self):
    Gtk.Window.__init__(self, title = 'SuperShape')

    layout_box = Gtk.Box.new(Gtk.Orientation.VERTICAL, 0)
    self.add(layout_box)



Chapter 8

195

    self.m = 3
    self.n1 = 2
    self.n2 = 18
    self.n3 = 18

    self.fig = Figure((6, 6), dpi = 80)
    w, h = self.fig.get_size_inches()
    dpi_res = self.fig.get_dpi()
    w, h = int(np.ceil(w * dpi_res)), int(np.ceil(h * dpi_res))

    canvas = FigureCanvasGTK3Agg(self.fig)
    canvas.set_size_request(w, h)
    layout_box.add(canvas)

    self.m_slider = Gtk.HScale.new(Gtk.Adjustment(self.m, 1, 20,  
      1., .1, 1))
    self.m_slider.connect('value-changed', self.on_m_slide)
    layout_box.add(self.m_slider)

    self.n1_slider = Gtk.HScale.new(Gtk.Adjustment(self.n1, .01,  
      20, 1., .1, 1))
    self.n1_slider.connect('value-changed', self.on_n1_slide)
    layout_box.add(self.n1_slider)

    self.n2_slider = Gtk.HScale.new(Gtk.Adjustment(self.n2, .01,  
      20, 1., .1, 1))
    self.n2_slider.connect('value-changed', self.on_n2_slide)
    layout_box.add(self.n2_slider)

    self.n3_slider = Gtk.HScale.new(Gtk.Adjustment(self.n3, .01,  
      20, 1., .1, 1))
    self.n3_slider.connect('value-changed', self.on_n3_slide)
    layout_box.add(self.n3_slider)

    self.draw_figure()
  def on_m_slide(self, event):
    self.m = self.m_slider.get_value()

    self.refresh_figure()

  def on_n1_slide(self, event):
    self.n1 = self.n1_slider.get_value()
    self.refresh_figure()



User Interface

196

  def on_n2_slide(self, event):
    self.n2 = self.n2_slider.get_value()
    self.refresh_figure()

  def on_n3_slide(self, event):
    self.n3 = self.n3_slider.get_value()
    self.refresh_figure()

  def draw_figure(self):
    self.phi = np.linspace(0, 2 * np.pi, 1024)
    ax = self.fig.add_subplot(111, polar = True)
    r = supershape_radius(self.phi, 1, 1, self.m, self.n1, self. 
      n2, self.n3)
    self.lines, = ax.plot(self.phi, r, lw = 3.)
    self.fig.canvas.draw()

  def refresh_figure(self):
    r = supershape_radius(self.phi, 1, 1, self.m, self.n1, self. 
      n2, self.n3)
    self.lines.set_ydata(r)
    self.fig.canvas.draw_idle()

4.	 To conclude, we set up our application and start it using the following code:
win = SuperShapeWindow()
win.connect('delete-event', Gtk.main_quit)
win.show_all()
Gtk.main()

5.	 The SuperShape curve is shown in a window, and the parameters of the curve can  
be adjusted with the sliders, as shown in the following figure:



Chapter 8

197

How it works...
matplotlib provides the FigureCanvasGTK3Agg object in the matplotlib.backends.
backend_gtk3agg module. The FigureCanvasGtk3Agg object is a GTK widget that 
contains a matplotlib figure. We have to set up the size of the canvas object using the 
following code:

  self.fig = Figure((6, 6), dpi = 80)

  w, h = self.fig.get_size_inches()



User Interface

198

  dpi_res = self.fig.get_dpi()
  w, h = int(np.ceil(w * dpi_res)), int(np.ceil(h * dpi_res))

  canvas = FigureCanvasGTK3Agg(self.fig)
  canvas.set_size_request(w, h)

From there, we are back to a familiar organization. We have a draw_figure() method to 
create the plot and a refresh_figure() method to update it. Those methods are identical 
to those of the WxWidget recipe. The few minor differences with the WxWidget recipe comes 
from the GTK API specifications. For instance, the slider widgets in GTK work with floating 
point units.

Integrating a plot in a Pyglet application
Pyglet is a very well written Python module to use OpenGL on any platform. Using Pyglet  
(and thus OpenGL) allows you to use the graphic hardware of your computer to its maximum. 
For instance, it would be fairly easy with Pyglet to show figures on three adjacent screens with 
fancy transition effects. In this recipe, we are going to see how to interface matplotlib with 
Pyglet. As in the previous example, we are going to display the SuperShape curve on the full 
screen and without any widgets.

How to do it...
Pyglet does not have the same functionality with widgets as Tkinter and wxWidgets have.  
This script will render a curve to an in-memory image. That image will then be simply shown 
on the whole screen surface. Thus, the figure will be shown on a full screen mode. Let's see 
how this is done using the following code:

import pyglet, StringIO
import numpy as np

from matplotlib.figure import Figure
from matplotlib.backends.backend_agg import FigureCanvasAgg

def render_figure(fig):
  w, h = fig.get_size_inches()
  dpi_res = fig.get_dpi()
  w, h = int(np.ceil(w * dpi_res)), int(np.ceil(h * dpi_res))

  canvas = FigureCanvasAgg(fig)
  pic_data = StringIO.StringIO()
  canvas.print_raw(pic_data, dpi = dpi_res)
  return pyglet.image.ImageData(w, h, 'RGBA', pic_data.getvalue(), -4  
    * w)



Chapter 8

199

def draw_figure(fig):
  X = np.linspace(-6, 6, 1024)
  Y = np.sinc(X)

  ax = fig.add_subplot(111)
  ax.plot(X, Y, lw = 2, color = 'k')

window = pyglet.window.Window(fullscreen = True)
dpi_res = min(window.width, window.height) / 10
fig = Figure((window.width / dpi_res, window.height / dpi_res), dpi = 
dpi_res)

draw_figure(fig)
image = render_figure(fig)

@window.event
def on_draw():
  window.clear()
  image.blit(0, 0)

pyglet.app.run()

This script will display a curve in full screen mode, exploiting the entire surface of your screen. 
Note that you have to press the Esc key to close the application.

How it works...
matplotlib provides a special object, FigureCanvasAgg, as part of the matplotlib.
backends.backend_agg module. This object constructor takes a figure as input and can 
render the result to a file. Using the print_raw method, the file will contain the raw pixel 
data. The standard StringIO module allows us to create an in-memory file. So we simply  
ask FigureCanvasAgg to render to a StringIO file as follows:

  canvas = FigureCanvasAgg(fig)
  pic_data = StringIO.StringIO()
  canvas.print_raw(pic_data, dpi = dpi_res)

Then, we can retrieve the in-memory data and use it to create a Pyglet Image object as follows:

pyglet.image.ImageData(w, h, 'RGBA', pic_data.getvalue(), -4 * w)

Note that we have to specify the width, w, and the height, h, of a picture. They can be deduced 
from the dimension of the Figure instance and its resolution using the following code:

  w, h = fig.get_size_inches()
  dpi_res = fig.get_dpi()
  w, h = int(np.ceil(w * dpi_res)), int(np.ceil(h * dpi_res))



User Interface

200

This recipe shows you more generally how to render a matplotlib figure to an in-memory 
buffer. For instance, one can write a script that renders several figures in memory and feed 
them to a module to create a video. Because all this happens in memory, it is faster than 
merely saving pictures files on a hard disk and later compiling the pictures into a video.



Index
Symbols
2D array

content, visualizing  140-144
2D figures

embedding, in 3D figure  173-176
2D scalar field

visualizing  149-151
2D vector field

streamlines, visualizing of  157-159
visualizing  155, 156

3D
scalar field, plotting in  167, 168

3D bar plot
demonstrating  176-178

3D curve plots
creating  165-167

3D figure
2D figures, embedding in  173-176

3D scatter plots
demonstrating  162-164

3D surface
black curves, removing  168-170

A
advanced label generation  102-104
aesthetic pattern, of independent lines  91
alignment control

about  84
horizontal  84
vertical  84

arrowprops parameter
options  87, 88

arrows
adding, on figure  86, 87

aspect ratio
setting, of figure  116, 117

axes
scaling, equally  112-114

axis
label, adding to  81, 82

axis range
setting  114, 115

B
back-to-back bar charts

plotting  29, 30
bar3d() method  178
bar charts

about  22
color maps, using for  55, 56
creating, with fixed labels  102
custom colors, using for  47, 48
horizontal bars  24
plotting  22
thickness  23

barh() function  24
bbox parameter

options  86
bounding box control  85, 86
boxplots

custom colors, using for  50-52
plotting  34

C
colormap  145
colormap legend

adding, to figure  146, 147
color maps

about  52



202

using, for bar charts  55, 56
using, for scatter plots  52-54

colors
defining  40-42
gray-level strings  41
HTML color strings  41
predefined names  40
quadruplets  40
triplets  40

color scheme
creating  73-75

composite figures
alternative ways  111, 112

content
visualizing, of 2D array  140-144

contour lines
about  151
visualizing  151-154

control
obtaining, on markers  71, 72

curve
plotting  7-9
plotting, from file data  16-19

custom colors, using
for bar charts  47, 48
for boxplots  50-52
for pie charts  49, 50
for scatter plots  43-45

D
deferred rendering mechanism  15
delegation  103
DPI (Dots Per Inches)  131
draw_figure() method  198

E
Enthought Canopy

installing  7

F
figure

about  125
arrows, adding on  86, 87
aspect ratio, setting of  116, 117
colormap legend, adding to  146, 147

grid, adding to  90, 91
rendering, to PNG file  128
shapes, adding in  93, 94

FigureCanvasWxAgg object  193
file data

curves, plotting from  16-19
fill pattern

controlling  60-62
fixed labels

bar charts, creating with  102
fundamental primitive lines

usage, demonstrating  91, 92

G
graph

legend, adding to  88, 89
graphic

title, adding to  78
gray-level strings  41
grid

adding, to figure  90, 91
GTK user interface

about  194
plot, integrating to  194-198

H
histograms

plotting  32, 33
horizontal bars  24
HTML color strings  41
HTML page

making, including figure  128

I
installation, Enthought Canopy  7
installation, matplotlib

about  6, 7
scenarios  6

interactive plots  179

L
label

adding, to axis  81, 82
lanzcos  145



203

LaTeX
about  79, 134
used, for displaying mathematical scripts  

in figure  79-81
LaTeX-style notations

using  79-81
LaTeX Wikibook

URL  79
legend

adding, to graph  88, 89
LinearScaling class  188
line pattern

controlling  56-58
lines

adding  91, 92
linestyle parameter  58
line style settings

line style, with plot types  58
line width  59, 60

line thickness
controlling  58-60

linewidth parameter  59
list comprehension  9
logarithmic scale

setting up  119, 120
using  120

Lorenz attractor  163, 166

M
Mandelbrot set  140, 145
map visualization  139
markers

control, obtaining on  71, 72
creating  69-71
predefined markers  62
regular polygon  62
size, controlling  66-68
start polygon  62
style, controlling  62-65
vertices list  62

mathematical scripts
displaying in figure, LaTeX used  79-81

matplotib.cm module  52
matplotlib

about  5
installing  6, 7

matplotlib module  74
matplotlib.patches.Polygon()constructor  96
matplotlibrc file  75
multiple bar charts

plotting  25, 26
multiple curves

plotting  13, 14
multiple figures

compositing  108-110
multiple-page PDF documents

handling  134-137

N
nonuniform 2D data

visualizing  147-149
nonuniform sampling capabilities  148
NumPy

about  10
using  10, 11

numpy.meshgrid() function  149-151
NumPy Package  12

O
output resolution

controlling  131-133

P
parametric 3D surface

plotting  170-172
path attributes

working with  96, 97
PDF document

generating  133
PDF (Probability Density Functions)  60
pie charts

custom colors, using for  49, 50
plotting  31

plot, integrating
in Pyglet application  198-200
to GTK user interface  194-198
to Tkinter user interface  183-188
to wxWidgets user interface  188-193

plot.boxplot() function  34
plot_surface() method  168
plot.xscale() function  120



204

plt.show() function  15
PNG file

figure, rendering to  128
PNG picture file

generating  126, 127
points

plotting  20, 21
polar coordinates

using  121-123
polar curve

rendering  121-123
polygons

working with  95
predefined color names  40
predefined markers  62
Pyglet

about  198
plot, integrating into  198-200

PyGObject  194
pyplot.annotate() function  86
pyplot.axes() function  114, 122
pyplot.bar() function  48, 54
pyplot.barh() function  48
pyplot.boxplot() function  35
pyplot.colorbar() function  145, 147
pyplot.contour() function  151-153
pyplot.figure() function  117
pyplot.grid() function  90
pyplot.imshow() function  140
pyplot.legend function

parameters  89, 90
pyplot.legend() function  88
pyplot.Line2D() function  92
pyplot.pcolormesh() function  149
pyplot.pie() function  49
pyplot.plot() function  41
pyplot.quiver() function  156
pyplot.savefig() function  126, 131
pyplot.scatter() function

about  42
common color, for all dots  42, 46
individual color, for each dot  43, 46

pyplot.setp() function  118
pyplot.show() function  126
pyplot.streamlines() function  158
pyplot.subplot2grid() function

about  108

parameters  109
pyplot.text() function  82
pyplot.title()function  78
pyplot.triplot() function  37
pyplot.xlabel() function  82
pyplot.xlim() function  115
pyplot.xticks() function  102
pyplot.ylabel() function  82
pyplot.ylim() function  115
pyplot.yscale() function  120
Python  5

Q
quadruplets color  40

R
refresh_figure() method  193, 198
regular polygon  62
rendering options

alignment control  84
bounding box control  85, 86

ReportLab  134

S
scalar field

plotting, in 3D  167, 168
scatter plots

about  161
color maps, using for  52-54
custom colors, using for  43-45

scientific figures  125
shapes

adding, in figure  93, 94
sinc  145
size

controlling, of markers  66-68
sliders  180
stacked bar charts

plotting  27-29
start polygon  62
streamlines

visualizing, of 2D vector field  157-159
style

controlling, of markers  62-65



205

subfigures
inserting  117, 118

SuperShape  179, 182
SVG document

generating  133

T
text

adding, text boxes used  82, 83
text boxes

used, for adding text  82, 83
ticker API

advanced label generation  102-104
tick labels  99
tick  97
tick labeling

controlling  99-101
tick spacing

controlling  97-99
title

adding, to graphic  78
Tkinter  183
Tkinter user interface

plot, integrating to  183-188
transparency

handling  128, 129
triangulations

about  36
plotting  36, 37

triplets color  40

U
user-controllable plot

creating  179-182

V
vertices list  62

W
wireframe view, of torus

getting  173
wxWidgets user interface

plot, integrating to  188-193





 
Thank you for buying  

matplotlib Plotting Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL 
Management" in April 2004 and subsequently continued to specialize in publishing highly focused 
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and 
customizing today's systems, applications, and frameworks. Our solution based books give you the 
knowledge and power to customize the software and technologies you're using to get the job done. 
Packt books are more specific and less general than the IT books you have seen in the past. Our 
unique business model allows us to bring you more focused information, giving you more of what 
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more 
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to 
continue its focus on specialization. This book is part of the Packt Open Source brand, home 
to books published on software built around Open Source licences, and offering information to 
anybody from advanced developers to budding web designers. The Open Source brand also runs 
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project 
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be 
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to 
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors 
will get in touch with you. 

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



NumPy Cookbook
ISBN: 978-1-84951-892-5             Paperback: 226 pages

Over 70 interesting recipes for learning the Python open 
source mathematical library, NumPy

1.	 Do high performance calculations with clean and 
efficient NumPy code.

2.	 Analyze large sets of data with statistical 
functions.

3.	 Execute complex linear algebra and mathematical 
computations.

Python Data Visualization 
Cookbook
ISBN: 978-1-78216-336-7            Paperback: 280 pages

Over 60 recipes that will enable you to learn how to 
create attractive visualizations using Python's most 
popular libraries

1.	 Learn how to set up an optimal Python 
environment for data visualization.

2.	 Understand the topics such as importing  
data for visualization and formatting data  
for visualization.

3.	 Understand the underlying data and how  
to use the right visualizations.

Please check www.PacktPub.com for information on our titles



NumPy Beginner's Guide  
Second Edition
ISBN:  978-1-78216-608-5            Paperback: 310 pages

An action packed guide using real world examples of the 
easy to use, high performance, free open source NumPy 
mathematical library

1.	 Perform high performance calculations with clean 
and efficient NumPy code.

2.	 Analyze large data sets with statistical functions.

3.	 Execute complex linear algebra and mathematical 
computations.

Learning SciPy for Numerical 
and Scientific Computing
ISBN: 978-1-78216-162-2            Paperback: 150 pages

A practical tutorial that guarantees fast, accurate, and 
easy-to-code solutions to your numerical and scientific 
computing problems with the power of SciPy and Python

1.	 Perform complex operations with large  
matrices, including eigenvalue problems,  
matrix decompositions, or solution to large 
systems of equations.

2.	 Step-by-step examples to easily implement 
statistical analysis and data mining that rivals 
in performance any of the costly specialized 
software suites.

3.	 Plenty of examples of state-of-the-art research 
problems from all disciplines of science, that 
prove how simple, yet effective, is to provide 
solutions based on SciPy.

Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: First Steps
	Introduction
	Installing matplotlib
	Plotting one curve
	Using NumPy
	Plotting multiple curves
	Plotting curves from file data
	Plotting points
	Plotting bar charts
	Plotting multiple bar charts
	Plotting stacked bar charts
	Plotting back-to-back bar charts
	Plotting pie charts
	Plotting histograms
	Plotting boxplots
	Plotting triangulations

	Chapter 2: Customizing the Color and Styles
	Introduction
	Defining your own colors
	Using custom colors for scatter plots
	Using custom colors for bar charts
	Using custom colors for pie charts
	Using custom colors for boxplots
	Using colormaps for scatter plots
	Using colormaps for bar charts
	Controlling line pattern and thickness
	Controlling a fill pattern
	Controlling a marker's style
	Controlling a marker's size
	Creating your own markers
	Getting more control over markers
	Creating your own color scheme

	Chapter 3: Working with Annotations
	Introduction
	Adding a title
	Using LaTeX-style notations
	Adding a label to each axis
	Adding text
	Adding arrows
	Adding a legend
	Adding a grid
	Adding lines
	Adding shapes
	Controlling ticks' spacing
	Controlling ticks labeling

	Chapter 4: Working with Figures
	Introduction
	Compositing multiple figures
	Scaling both axes equally
	Setting an axis range
	Setting the aspect ratio
	Inserting subfigures
	Using a logarithmic scale
	Using polar coordinates

	Chapter 5: Working with a File Output
	Introduction
	Generating a PNG picture file
	Handling transparency
	Controlling the output resolution
	Generating PDF or SVG documents
	Handling multiple-page PDF documents

	Chapter 6: Working with Maps
	Introduction
	Visualizing the content of a 2D array
	Adding a colormap legend to a figure
	Visualizing nonuniform 2D data
	Visualizing a 2D scalar field
	Visualizing contour lines
	Visualizing a 2D vector field
	Visualizing the streamlines of a 2D vector field

	Chapter 7: Working with 3D Figures
	Introduction
	Creating 3D scatter plots
	Creating 3D curve plots
	Plotting a scalar field in 3D
	Plotting a parametric 3D surface
	Embedding 2D figures in a 3D figure
	Creating a 3D bar plot

	Chapter 8: User Interface
	Introduction
	Making a user-controllable plot
	Integrating a plot to a Tkinter user interface
	Integrating a plot to wxWidgets user interface
	Integrating a plot to GTK user interface
	Integrating a plot in a Pyglet application

	Index



